Antibiotic Resistance Pattern in Pseudomonas aeruginosa Isolated from Clinical Samples Other than Burn Samples in Iran

  • Ebrahim Karimi
  • Fatemeh Ghalibafan
  • Akram Esfandani
  • Niusha Manoochehri Arash
  • Sassan Mohammadi
  • Azad Khaledi
  • Hakimeh Akbari
  • Maria Khurshid
Keywords: Burns, Drug resistance, Integrons, Pseudomonas aeruginosa

Abstract

Background: The purpose of this study was to systematically review the prevalence of class 1 integrons, antibiotic resistance pattern in Pseudomonas aeruginosa (P. aeruginosa) isolated from clinical samples other than burn samples.

Methods: The Web of Science, PubMed, Scopus, and Science Direct databases were searched using keywords based on the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. The cross-sectional studies published from 1st January 2000 until 1st January 2019 were included which addressed the prevalence of class 1 integrons and antibiotic-resistance in P. aeruginosa isolated from clinical samples other than burn samples. Meta-analysis was conducted using Comprehensive Meta-Analysis (CMA) software. The random-effects model, Cochran’s Q and I2 tests were applied for statistical analyses.

Results: Eight articles met the eligibility standards for including in the present meta-analysis. The combined prevalence of class 1 integrons in P. aeruginosa isolated from clinical samples other than burn samples was reported by 40% (95% CI:26.1-55.8%). The pooled prevalence of Multi-Drug Resistant (MDR) P. aeruginosa isolates was 70.1%. The highest prevalence of combined antibiotic resistance was related to carbenicillin with a resistance rate of 79.9%. In general, 6 (75%) out of the 8 included studies showed the correlation between the presence of class 1 integrons and antibiotic resistance.

Conclusion: Regarding the correlation between the presence of integrons and the high antibiotic resistance reported by studies included in the present review, there is the need for preventive measures to prevent the spread of resistance by integrons and transferring to other micro-organisms

Published
2020-11-07
Section
Articles