Synthesis and Bio-imaging Applications of Silver Nanoparticles for Breast Cancer Imaging
Abstract
Purpose: Timely detection of breast cancer is essential for improving treatment outcomes, particularly in the field of oncology. Several diagnostic techniques are available, and one promising approach is the use of Quantum Dots (QDs) for accurate and early detection. This study focuses on the utilization of cadmium selenium QDs with and without silver coating, which can modulate the transfer intensity of light sources.
Materials and Methods: Cadmium selenium QDs with silver coating (CdSe@Ag2S) were synthesized and characterized. These QDs were then mixed with blood samples containing different concentrations of hemoglobin to simulate breast cancer conditions. The mixture was injected into phantom vessels representing breast tissue, and the transmitted light intensity was measured using a power meter. The light source used operated in the near-infrared range at a wavelength of 635 nm.
Results: The transmitted light intensity from vessels containing normal hemoglobin concentration was measured at 5.24 mW. However, in cancerous breast tissue, the intensity decreased to 4.56 mW and 3.34 mW for two and four times the hemoglobin concentrations, respectively. When the CdSe QDs were combined with different hemoglobin concentrations, the intensities of transmitted light were found to be 3.14 mW, 2.26 mW, and 1.22 mW for normal, twice, and four times the concentration of hemoglobin in turn. Furthermore, when the test was conducted using CdSe@Ag2S QDs, the intensities of transmitted light were 1.83 mW, 2.52 mW, and 3.31 mW for the same hemoglobin concentrations, respectively.
Conclusion: This study concludes that the combination of different hemoglobin concentrations with QDs enables the differentiation between healthy and cancerous blood, enabling the early detection of breast cancer during its initial stages of development. Early detection of breast cancer has significant potential for improving treatment outcomes in the field of oncology.