Targeted Gold Nanoparticles for Molecular CT Imaging of Breast Cancer: An In-Vitro Study
Abstract
Purpose: The incorporation of Nanoparticles (NPs) in Computed Tomography (CT) imaging significantly enhances the contrast, clarity, and sensitivity of CT scans, leading to a substantial improvement in the accuracy and reliability of diagnostic information obtained from the images. The objective of the current research was to investigate the application of gold (Au) NPs in enhancing the imaging capabilities of Breast Cancer (BC) cells.
Materials and Methods: Au NPs were synthesized by loading Trastuzumab (TZ) on PEGylated Au NPs. Firstly, Au NPs were produced and coated with PEG-SH to form PEG-Au NPs. Next, TZ was coupled with OPSS-PEG-SVA to enable its attachment to the PEG-Au NPs. The resulting NPs were characterized for their structure, size, and morphology using standard analytical techniques. To assess the potential of the developed NPs for CT scan imaging of BC cells, SKBr-3 cells were treated with Au NPs and TZ-PEG-Au NPs. Additionally, the cytotoxicity of the NPs was evaluated with the MTT technique.
Results: The SEM and TEM analyses revealed that the synthesized NPs exhibited a spherical shape and displayed a relatively uniform size distribution (approximately 45 nm). The results showed that the developed Au NPs have acceptable biocompatibility and superior X-ray attenuation properties compared to a commonly used contrast agent.
Conclusion: Based on our results, it can be concluded that the proposed TZ- Polyethylene Glycol-Au NPs are suitable for CT imaging of BC cells.