Cadmium Oxide Nanoparticles Synthesis Using Pulsed Laser Ablation in a Liquid Medium and Investigation of their Antibacterial Activity

  • Riyam H. Shukur Department of Physics, College Engineering, Al-Nahrain University, Baghdad, Iraq
  • Sulaiman M. Hasan Department of Basic Science, Collage of Dentistry, Mustansiriya University, Baghdad, Iraq
Keywords: Pulsed Laser Ablation; Cadmium Oxide Nanoparticles; Antibacterial Activity; Liquid Medium.

Abstract

Purpose: Recent years have witnessed a significant amount of research into laser ablation in liquids due to the many potential applications of laser microprocessing of materials, including the synthesis of nanomaterials and nanostructures. This study aims to explore the antibacterial effects of cadmium oxide on both positive and negative bacteria.

Materials and Methods: Pulsed Laser Ablation (PLA) in liquid is a straightforward and environmentally friendly technical technique that works in water or other organic liquids under ambient conditions, in contrast to other, usually chemical methods. Here, 30 milliliters of deionized water were used to create Cadmium Oxide (CdO) nanoparticles using the PLA method. UV-vis spectrometry, FT-IR, X-ray spectroscopy, and FESEM were utilized to analyze the products' morphology, spectral content, and particle size.

Results: The produced nanocomposites were tested as antibacterial agents against gram-negative bacteria (Proteus mirabilis and Escherichia coli) as well as gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis). The MIC results on the MTP plate with the synthesized Cd NPS compound were as follows: Proteus mirabilis (6.25%), Escherichia coli (12.5%), Enterococcus faecalis (12.5%), and Staphylococcus aureus (12.5%). These findings indicate that the synthesized nanoparticles exhibit comparable antibacterial activity against both Gram-positive and Gram-negative bacteria.

Conclusion: The synthesized nanoparticles made of CdO demonstrated notable antibacterial activity that was effective against all of the bacteria that were tested in the experiments. This indicates that the CdO nanocomposite has the potential to inhibit the growth of a wide variety of bacterial strains.

Published
2025-07-20
Section
Articles