A Novel Strategy for Enhance Potentiation of Meglumine antimo-niate against Leishmania major In Vitro
Abstract
Background: We aimed to design a different method of drug delivery for increased transfer of the choice drug (meglumine antimoniate) within the host cells. Therefore, listeriolysin O (LLO), a bacterial product which is a member of pore-forming peptides was used as an enhancer factor with meglumine antimoniate in order to facilitate the transition of the drug across macrophage membrane.
Methods: LLO was produced in Isfahan University of Medical Sciences in 2016, by expressing the hlyA gene in Escherichia coli and purified using affinity chromatography. Cytotoxicity of the purified protein was investigated in an in vitro model of macrophage Leishmania infection.
Results: LLO was cytotoxic against murine macrophage cells (J774-A1) and amastigote forms of L. major (MRHO/IR/75/ER). It was less toxic to macrophages (CC50=2.56 μg ml-1 ±0.09) than to the parasites (IC50=1.72 μg ml-1 ±0.07). Moreover, non-cytotoxic concentration of LLO (0.006 ug ml-1) potentiated the cytotoxicity induced by low dose concentration of meglumine antimoniate. Very little dose of meglumine antimoniate was needed when combined with the LLO (IC50=12.63 μg ml-1 ±0.13) in comparison with the cytotoxicity induced when the drug is used alone (IC50=46.17 μg ml-1 ±0.28).
Conclusion: The combination of pore-forming proteins with anti-leishmanial agents could increase the advantage of anti-leishmanial drugs. Since lower concentrations of anti-leishmanial drugs can reduce undesirable side effects of chemotherapy trials carried out in animal models and then in humans with this system.