Innovating Glioma Therapy Using Secretions from Umbilical Cord Mesenchymal Stem Cells to Target Homeobox and Growth Factor Genes
Abstract
Background: Glioblastoma is a prevalent and challenging malignant brain tumor. Secretome therapy using human umbilical cord mesenchymal stem cells (hUCMSCs) appears to be a promising treatment for glioblastoma. This study analyzed the potential of the hUCMSC secretomes (hUCMSCs-sec) for glioma therapy.
Materials and Methods: Characterization of hUCMSCs was performed by examining certain markers, including CD44, CD90, CD105, CD73, CD13, CD19, CD14, CD45, CD34, and HLA-D. The cells’ ability to differentiate into adipocytes, chondrocytes, and osteocytes was evaluated. Cytotoxic effect on Glioblastoma (GBM) cells was analyzed using 2-[2-methoxy-4-nitrophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophenyl]-2H-tetrazolium (WST-8). mRNA relative expression, including homeobox (HOXA5, HOXB1, HOXC9 and HOXC10), insulin-like growth factor binding protein 2 (IGFBP2), Extracellular signal-regulated kinases (ERK), Epidermal growth factor receptor (EGFR), and Caspase 3 (Casp3), were quantified by quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR).
Results: The hUCMSCs-sec was successfully isolated and identified, showing positive markers and its capacity to differentiate into chondrocytes, adipocytes, and osteocytes. hUCMSCs-sec exerted a cytotoxic effect on GBM cells and upregulated the expression of Casp3, whereas it decreased the expression of HOX, IGFBP2, EGFR, and ERK in GBM cells.
Conclusion: The secretomes from hUCMSCs show potential for GBM cell therapy by improving the deregulation of HOX, inducing apoptosis, and inhibiting cell proliferation genes.