In Vitro Comparison of Marginal and Internal Fit of Zirconia Copings Fabricated by One CAD/CAM System with Two Different Scanners

  • Zahra Khamverdi1
  • Elmira Najafrad
  • Maryam Farhadian
Keywords: Computer-Aided Design; Dental Marginal Adaptation; Yttria Stabilized Tetragonal Zirconia

Abstract

Objectives: Marginal and internal fit of restorations are two important clinical factors for assessing the quality and durability of computer-aided design/computer-aided manufacturing (CAD/CAM)-fabricated monolithic zirconia restorations. The purpose of this study was to evaluate the marginal and internal fit of CAD/CAM zirconia crowns with two different scanners (i3D scanner and 3Shape D700).

Materials and Methods: Twelve extracted sound human posterior teeth were prepared for full zirconia crowns. Two different extraoral scanners namely i3D scanner and 3Shape D700 were used to digitize type IV gypsum casts poured from impressions. The crowns were milled from presintered monolithic zirconia blocks by a 5-axis milling machine. The replica technique and MIP4 microscopic image analysis software were utilized to measure the marginal and internal fit by a stereomicroscope at ×40 magnification. The collected data were analyzed by paired t-test.

Results: The mean marginal gap was 203.62 μm with 3Shape D700 scanner and 241.07 μm with i3D scanner. The mean internal gap was 192.30 μm with 3Shape D700 scanner and 196.06 μm with i3D scanner. The results of paired t-test indicated that there was a statistically significant difference between the two scanners in marginal fit (P=0.04); while, there was no statistically significant difference in internal fit (P=0.761).

Conclusion: Within the limitations of this study, the results showed that type of extraoral scanner affected the marginal fit of CAD/CAM fabricated crowns; however, it did not have a significant effect on their internal fit.

Published
2021-02-17
Section
Articles