Degree of Conversion of Resin-Modified Glass Ionomer Cement Containing Hydroxyapatite Nanoparticles

  • Behnoosh Jalalian
  • Parisa Golkar
  • Alireza Paktinat
  • Elham Ahmadi
  • Seyed Ali Panahande
  • Ladan Ranjbar Omrani
Keywords: Nano-hydroxyapatite; Polymerization; Fuji II LC cement improved

Abstract

Objectives: Hydroxyapatite (HA) nanoparticles are used to improve the physical and mechanical properties of glass ionomers (GIs). This study aimed to assess the effect of addition of different weight percentages of nano-HA on degree of conversion (DC) of Fuji II LC GI cement using a spectrometer.

Materials and Methods: In this in vitro experimental study, 30 samples were fabricated of Fuji II LC (improved) GI cement in six groups (n=5) containing 0%, 1%, 2%, 5%, 7% and 10wt% nano-HA. The obtained paste in each group was subjected to Fourier-transform infrared spectroscopy (FTIR) before curing to assess the monomer to polymer DC percentage. The paste was then light-cured and underwent FTIR again. One-way ANOVA was applied to compare the DC percentage of different groups. Pairwise comparisons were performed using the Tukey’s test.

Results: The DC was 57.88±0.57% in 0%, 60.04±0.63% in 1%, 66.92±0.54% in 2%, 65.5±0.71% in 5%, 51.49±0.24% in 7% and 50.09±0.32% in 10% nano-HA group. The difference in DC among the groups was statistically significant (P<0.0001). The highest DC was noted in 2% nano-HA and the lowest DC was found in 10% nano-HA group. Pairwise comparisons revealed significant differences between the groups in DC (P<0.0001).

Conclusion: Increasing the weight percentage of nano-HA to 2% increased the DC but increasing the nano-HA weight percentage over 5% decreased the DC of resin-modified glass ionomer cement (RMGIC). The highest DC was noted in 5w% and 2w% nano-HA groups. Thus, 5w% and 2w% nano-HA can be used to improve the DC of RMGIC

Published
2020-06-29
Section
Articles