Effect of Er:YAG Laser Application and Sandblasting on Shear Bond Strength of Veneering Ceramic to Zirconia Core
Abstract
Objectives: Porcelain chipping and delamination are among the shortcomings of all-ceramic restorations. This study aimed to assess the effect of laser irradiation and sandblasting on shear bond strength (SBS) of zirconia to veneering porcelain.
Materials and Methods: In this in vitro, experimental study, 60 zirconia blocks were randomly divided into three groups (n=20) for surface treatment with Er:YAG laser, sandblasting, and no surface treatment (control). Each group was randomly divided into two subgroups (n=10) for porcelain application by the layering or the pressing technique. The surface roughness, SBS, and failure mode were determined and analyzed using two-way ANOVA, Tukey’s HSD test, Chi-square test, and Pearson’s correlation test (alpha=0.05).
Results: The mean SBS was 8.16±3.66 MPa, 9.32±2.7 MPa, and 11.85±3.06 MPa in the control, laser, and sandblasting groups, respectively. The SBS was significantly different among the three groups (P=0.002). The failure mode of the three groups was not significantly different (P>0.05). The sandblasted group showed significantly higher surface roughness than the control and laser groups (P<0.001).
Conclusion: Sandblasting yielded higher SBS particularly when the porcelain was applied by the layering technique. Although laser irradiation increased the SBS, the difference with the control group was not statistically significant.