Assessing Pain Behavioral Responses and Neurotrophic Factors in the Dorsal Root Ganglion, Serum and Peritoneal Fluid in Rat Models of Endometriosis

  • Zahra Kasheh Farahani
  • Mahnaz Taherianfard
  • Mohammad Mehdi Naderi
  • Hortensia Ferrero
Keywords: Endometriosis; Brain-Derived Neurotrophic Factor; Nerve Growth Factor; Calcitonin Gene-Related Peptide; Substance P; Rat

Abstract

Objective: Pain is the most frequently reported symptom involving in endometriosis. The alterations of neurotrophic factors and certain neuropeptides in the dorsal root ganglion (DRG), as well as serum and peritoneal fluid (PF), were evaluated in rat models of endometriosis.

Materials and methods: Twenty-four Sprague Dawley female rats were selected and maintained in a standard condition with 12 hours’ dark-light cycles. All the rats were randomly assigned to 3 groups: Control (intact rats); Sham (the operation was conducted without endometriosis induction); and Endometriosis (endometriosis induction was performed).  The formalin test was performed for all groups on the first and the 21st day of the study. The assessments of Brain-Derived Neurotrophic Factor (BDNF), Nerve Growth Factor (NGF), Calcitonin Gene-Related Peptide (CGRP), and Substance P levels were carried out by enzyme-linked immunosorbent assay (Elisa). The data were analyzed by One-Way ANOVA. The Tukey’s test was used as post-hoc.

Results: Endometriosis induction significantly increased the mean pain scores in the endometriosis group in all three phases of the formalin test. The concentrations of DRG-CGRP (p=0.035), BDNF (p<0.001), and NGF (p=0.006) in the endometriosis group were significantly higher than that of the other groups while serum-BDNF (p<0.001), Substance P (p=0.009), and NGF (p=0.015) were significantly lower in endometriosis group compared to other groups. The concentrations of PF-BDNF (p=0.025) and Substance P (p=0.009) were significantly lower than those of other groups.

Conclusion: The present results delineate that endometriosis induction could lead to hyperalgesia. This may be related to the significant increases in the BDNF, NGF, and CGRP in DRG.

Published
2021-01-19
Section
Articles