Evaluating the Efficiency of Microwaved Sludge in the Removal of 2, 4-Dinitrophenol from Aqueous Solutions: Equilibrium and Kinetics Studies
Abstract
Introduction: Nitrophenol compounds are toxic compounds found in industrial wastewaters. 2,4-dinitrophenol is the most dangerous compound among phenolic compounds. The aim of this study was to evaluate the removal of 2,4-DNP from wastewater by microwaved dried sludge adsorbent.
Materials and Methods: The results of 2,4-DNP removal were discontinuously obtained by the high performance liquid chromatography (HPLC) at a wavelength of 360 nm with various effective factors, such as contact time, pH, initial concentration of 2,4-DNP, and microwaved sludge dose. Finally, the results were analyzed using the kinetics and isotherm models. The equilibrium time was obtained 120 min. The maximum removal rate was obtained at pH 7.
Results: The findings indicated that the removal efficiency increased by increasing the adsorbent dose and decreasing the 2,4-DNP concentration. It was revealed that the removal of 2,4-DNP by microwaved sludge was 86%. The correlation coefficient value of linear and non-linear regression showed that kinetic studies follow the pseudo-second order model and isotherm studies follow the Freundlich isotherm model. The adsorption method relied entirely on pH and affected the adsorbent area attributes, ionization rate, and Delete percentage. When the pH was high, there was competition for the adsorption sites between hydroxide ions (OH) and 2,4-DNP molecules. At first, the adsorption process was high speed and gradually reached a stable level, because after a while, the adsorption sites become saturated.
Conclusion: As the absorbent dose increases, the efficiency of the adsorption process increases, because larger amounts of adsorbent cause higher adsorption places.