Optimization of gamma-aminobutyric acid production by probiotic bacteria through response surface methodology
Abstract
Background and Objectives: Gamma-aminobutyric acid (GABA) is a non-protein four-carbon amino acid that has many physiological properties, including reducing blood pressure, accelerating protein synthesis in the brain, and treatment of insomnia and depression. This amino acid is produced by a number of lactic acid bacteria, fungi and yeasts. The objective of the present study was to identify probiotic bacteria with the maximum ability to generate GABA and optimize the bacterial culture conditions having the highest potential for GABA production.
Materials and Methods: The potential of GABA production by Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus rhamnosus, Lactobacillus casei, Streptococcus thermophilus, Lactobacillus brevis and Lactococcus lactis ssp. lactis in the culture medium of MRS broth was assessed by High Performance Liquid Chromatography (HPLC). In order to increase the rate of GABA produced by the bacteria having the highest potential for GABA production, the conditions of the culture medium including pH (3.5 to 6.5) "temperature (25 to 45°C), time (12 to 96 h) and glutamic acid (GA) concentration (25 to 650 mmol) were optimized by the Box-Behnken’s Response Surface Method (RSM).
Results: Lactobacillus brevis had the highest potential of GABA production (5960.8 mg/l). The effect of time and GA con- centration was significant on the amount of GABA production. The best conditions of culture medium to achieve the highest amount of GABA production by Lactobacillus brevis (19960 mg/l) were temperature 34.09°C, pH 4.65, GA concentration 650 mmol and time 96 h.
Conclusion: The results showed that by optimization of the culture medium conditions of probiotic bacteria we can produce more GABA in culture medium