Antibiotic resistance pattern and phylogenetic groups of the uropathogenic Escherichia coli isolates from urinary tract infections in Hamedan, west of Iran
Abstract
Background and Objectives: Escherichia coli is the most common causative agent of urinary tract infections (UTIs) in 90-80% of patients in all age groups. Phylogenetic groups of these bacteria are variable and the most known groups are A, B1, B2 and D. The present study aimed to evaluate the phylogenetic groups of E. coli samples obtained from UTIs and their relation with antibiotic resistance patterns of isolates. Materials and Methods: In this study 113 E. coli isolates were isolated from distinct patients with UTIs referred to Hamadan hospitals. After biochemical and molecular identification of the isolates, typing and phylogenetic grouping of E. coli strains were performed using multiplex PCR targeting chu, yjaA and TSPE4.C2 genes. The anti-microbial susceptibility of the isolates to amikacin, ampicillin, trimethoprim-sulfamethoxazole, amoxicillin/clavulanic acid, ciprofloxacin, cefotaxime, imipenem, aztreonam, gentamicin, meropenem, nitrofurantoin, nalidixic acid and cefazolin was determined using disk diffusion method. Results: Of 113 isolates, 50 (44.2%), 35 (31%), 23 (20.4%) and 5 (4.4%) of samples belonged to group B2, group D, group A and group B1 phylogenetic groups respectively. All isolates were susceptible to meropenem, imipenem (100%), followed by amikacin (99.1%). The highest resistance rates were observed against ampicillin (74.3%) and nalidixic acid (70.8%). Correlation between phylogenetic groups and antibiotic susceptibilities was significant only with co-amoxiclav (P = 0.006), which had the highest resistance in phylogenetic group A. Conclusion: Prevalence of different phylogroup and resistance associated with them in E. coli samples could be variable in each region. Therefore, investigating of these items in E. coli infections, could be more helpful in selecting the appropriate antibiotic treatment and epidemiological studies.