Isolation and characterization of a bisphenol A-degrading strain, Pseudomonas aeruginosa DU2, from soil containing decaying plants

  • Navid Chamak Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
  • Parisa Farrokh Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
  • Roohollah Rostami Research Center for Health Sciences and Technologies, Semnan University of Medical Sciences, Semnan, Iran
  • Fatemeh Salimi Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
Keywords: Biodegradation; Bisphenol A; Pseudomonas; Soil

Abstract

Background and Objectives: Bisphenol A (BPA) is a toxic compound with broad applications in the plastics industry. BPA has harmful effects on various organisms and its efficient removal is necessary. The microbial degradation of BPA is a safe and economical approach. In this research, soil samples containing decaying plants were screened to isolate a BPA-degrad- able bacterial strain.

Materials and Methods: Soil samples were collected from different locations in Damghan, Semnan province, Iran. To enrich BPA-degrading bacteria, the samples were cultured in a stepwise manner in a mineral medium containing increasing BPA concentrations (5 to 40 mg/L). The ability of isolated bacteria in degrading BPA was assayed by Folin-Ciocalteu and high-performance liquid chromatography methods. The biodegradation efficiency of the most efficient isolate was assayed under distinct conditions and it was identified through the sequencing of the 16S rRNA gene.

Results: Among the isolated bacteria, Pseudomonas aeruginosa DU2 (GenBank accession number: OP919484) showed the most BPA biodegradation ability. The highest BPA degradation (52.98%) was observed in the mineral medium containing 5 mg/L BPA and the inoculum size of 6 × 107 CFU/mL at pH 9 and in the presence of 0.05% (w/v) NaCl during 10 days.

Conclusion: These results offer soil containing decaying plants as a promising source for finding BPA-degrading bacteria. P. aeruginosa DU2 has basal BPA removal ability, which could be improved by optimization of medium components and growth conditions.

Published
2023-11-24
Section
Articles