Activation of Invariant Natural Killer T Cell Subsets in C57BL/6J Mice by Different Injection Modes of α-galactosylceramide

  • Ming Meng
  • Shengde Chen
  • Xiang Gao
  • Huifang Liu
  • Huijuan Zhao
  • Jingnan Zhang
  • Jinku Zhang
  • Dongzhi Chen

Abstract

Whether different injection modes of α-galactosylceramide (α-GalCer) affect the activation of different subsets of invariant natural killer T (iNKT) cells in different tissues and organs of mice is unclear.

This study included healthy control, subcutaneous injection, and intraperitoneal injection groups (n=10 in each group). The subcutaneous and intraperitoneal injection groups were injected with α-Galcer (0.1 mg/kg weight), and then the changes in thymus, spleen, and liver iNKT cell frequencies and subsets were observed.

The intraperitoneal injection of α-GalCer could increase the frequency of splenic iNKT cells, but the subcutaneous injection did not affect the frequency. Neither injection had any effect on the frequency of iNKT cells in the thymus and liver. The subcutaneous injection of α-GalCer increased the rate of iNKT2 subsets in the thymus but did not affect the rate of iNKT1 subsets. However, the intraperitoneal injection of α-GalCer did not affect thymus iNKT1 and iNKT2 subsets. Interestingly, the subcutaneous injection of α-GalCer significantly increased the proportion of iNKT1 in the spleen and liver but did not significantly change the proportion of iNKT2. The intraperitoneal injection of  α-GalCer significantly increased the rate of iNKT2 in spleen and liver but decreased the rate of iNKT1.

Subsets of iNKT1 or iNKT2 cells in the spleen and liver were selectively activated by the subcutaneous or intraperitoneal injection of α-GalCer. It provides a valuable means for treating tumors and certain autoimmune diseases. Further exploration of the activation mechanism may provide new ideas about the development of related vaccines.

Published
2020-02-22
Section
Articles