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Introduction: Diabetes is a chronic, non-communicable disease characterized by elevated blood glucose 
levels. The purpose of this study was to jointly model the transition of diabetic patients in a series of clinical 
states and to assess the relationship between each state and different patient characteristics.
Methods: A hospital-based retrospective study was conducted on 524 patients with type II diabetes, aged 18 
years or older, who attended their medication between January 1, 2005, and December 31, 2017. Multistate 
models with different assumptions were considered to explore the effects of different prognostic factors on the 
transition intensity of type II diabetes mellitus patients. 
Results: During a median follow-up time of 7.4 years (Inter-Quartile Range=4.01), 54.8% of diabetic patients 
developed either microvascular or macrovascular complications, and 10.5% of them experienced both micro- 
and macrocomplications, and 16.66% of diabetes patients died. The assumption Markov was assessed by using 
the likelihood ratio test showed that Markov assumption was not held just for the transition. The transition 
rate of patients from the macrovascular state to the death state was affected by the residence of the patients 
(P=0.05) and age at diagnosis (p=0.01). The transition rates of patients with microvascular complications 
to death were significantly affected by baseline triglyceride level (P<0.001), age at first diagnosis (P=0.01), 
baseline glucose level (P=0.03, and baseline serum creatinine level (P=0.04). 
Conclusion: The semi-Markov model fitted the data well and could be used as a convenient model for the 
analysis of time to diabetes-related complications or death.   
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Introduction 

Diabetes mellitus (DM) is a chronic, non-
communicable disease characterized by 
elevated levels of blood glucose that occurs 
due to failure in secretion, action, or both of 

insulin.1 It is commonly classified as type 
I (T1DM), type II (T2DM), or gestational 
diabetes, of which T2DM is the most common 
form.2 T1DM, where the possible risk factors 
are autoimmunity, genetic, and environmental 
factors, accounts for 5% to 10% of all cases 
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of diabetes, whereas type II diabetes occurs 
when the body cannot produce enough insulin 
or cannot use insulin, which accounts for 90% 
to 95% of all diagnosed diabetes cases.3 T2DM  
may be unrecognized until complications 
become evident as the disease develops 
gradually.
Both the number of new cases and the prevalence 
of diabetes have been steadily increasing 
over the past few decades.4 According to the 
International Diabetes Federation report, 
nearly half a billion people live with diabetes 
worldwide and among these, almost (80%) of 
diabetes  cases are found in low- and middle-
income countries. This happens because of 
rapid urbanization, unhealthy diets, increasingly 
sedentary lifestyles, and inadequate resources 
to provide preventive or medical care for 
their populations.5 This is a major cause of 
death in most countries. As a result, diabetic 
complications have a significant economic 
impact on countries, healthcare systems, and 
above all, individuals with diabetes and their 
families.6-8

Ethiopia is challenged by the growing 
magnitude of chronic non-communicable 
diseases such as diabetes mellitus.9 According 
to the 2017 International Diabetes Federation 
report, the number of people living with 
diabetes in Ethiopia was nearly 2.6 million, 
with an estimated prevalence of 3.8%.6 The 
same report estimated that Ethiopia would 
be the 9th highest country globally, with 14.1 
million diabetic cases by 2045.
Diabetes is not only a serious condition but 
also a risk factor for both short- and long- term 
complications. Microvascular complications 
(MiVasC's) and macrovascular complications 
(MaVasC's)  are associated with long-term 
diabetes-related complications that can result 

in morbidity and mortality.2, 8, 10 Diabetic 
nephropathy, neuropathy, and retinopathy are 
the main types of MiVasC's.11 Diabetes mellitus 
and its complications have increased over the 
years and are among the common reasons for 
inpatient admissions in Ethiopia.12 It is the ninth 
leading killer in the country.13 The prevalence of 
diabetes-related vascular complications has not 
been well identified and documented, although 
its impact continues to rise. In studying chronic 
diseases such as diabetic complications, clinical 
interest lies in both the final outcome (death) 
and the dynamics of the complications process. 
Multistate models are useful in describing the 
progression of diseases with several possible 
states over time.14-18 These models provide an 
appealing framework to study the movement 
of disease progression across a certain number 
of states defined by specific disease conditions 
and their prognostic factors.19, 20 
Multistate models were introduced in 1978 
by Aalen and Johansen.21 However, these 
models are not commonly used despite their 
potential applications. Although multistate 
models are  widely applied  in clinical studies 
and other fields, they are often overlooked 
by investigators in time-to-event analysis.22 
Compared with the Cox regression model 
with a single endpoint, multistate models 
provide a more detailed insight into the disease 
process.23, 24 Survival models in the multistate 
framework provide methods to explore the 
effect of covariates on multiple responses, 
taking into account and evaluating the effects 
of intermediate events. Therefore, the purpose 
of this study was  to explore how T2DM 
patients progress in different  disease status, 
and to determine the prevalence and predictors 
of vascular complications as well as mortality 
status of type II diabetes mellitus (T2DM) 
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patients based on a retrospective cohort study 
of patients in Debre Markos Referral Hospital 
(DMRH).
Specifically, this research  sought to answer the 
following questions:
What is the prevalence of microvascular, and 
macrovascular complications among patients 
with T2DM?
To what extent do the possible risk factors affect 
the transition intensity of T2DM to different 
clinical states?
Is the effect of prognostic factors the same 
across transitions?

Methods

Study Area and Period

The study was conducted at the Debre Markos 
Referral Hospital (DMRH) in the town of  
Debre Markos. DMRH  is located in the East 
Gojjam, Amhara National Regional State, 
which is 3000 KM in the northwest of Addis 
Ababa, capital of Ethiopia. The data for this 
study were collected from January 1, 2019, to 
March 30, 2019. 

Study Design, Population and Period

A hospital-based retrospective study design 
was used on T2DM patients. All T2DM  
patients attending out-patient follow-up clinic 
at DMRH were taken as the source population. 
The study population was T2DM patients 
whose age was 18 years and above  who have 
been on follow-up at DMRH  from January 1, 
2005, to December 31, 2017. 
All  T2DM patients were retrospectively 
followed-up for any medical condition (such 
as developing vascular complications or death) 

from entry to the end of follow up. Once the 
individual diagnosed to have T2DM, the 
individual are required to visit T2DM clinics 
every month under normal conditions or 
absence of comorbidities. The T2DM patient 
was considered right censored when she/he did 
not experience the event of interest  or  lost to 
follow-up in the follow-up  period. 

Data Collection Tools and Procedures

A data abstraction sheet was developed based 
on information documented in the patients’ 
medical records. To ensure the quality of the 
data, nurses working in the same hospital were 
trained on data collection procedures and data 
abstraction sheets.  The members of the research 
team supervised the data collection process to 
verify the completeness of the data. The data 
were checked for completeness during data 
entry and cleaning processes. The information 
obtained from the patient medical cards was 
entered into Excel sheets and subsequently 
transferred for analysis into R software.

Study Variables

The primary outcome (state) was defined as the 
time taken to develop vascular complications 
(MiVasC or MaVasC)  or death from the 
patients' first T2DM illness but free of any 
complications. Covariates such as patient sex, 
diabetes duration with T2DM,  age at the onset 
of diabetes, residence (rural or urban), blood 
pressure (<140/90mmHg or ≥140/90 mmHg 
), family history of diabetes, including fasting 
serum lipids (HDL, LDL, and triglycerides), 
glycated hemoglobin percentage (HbA1c%), 
serum creatinine level and serum electrolytes 
(sodium, potassium, and chloride levels) were 
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extracted. A patient was considered in the 
microvascular state if he/she developed at least 
one of  the MiVasC's such as diabetic neuropathy, 
retinopathy, or nephropathy. Similarly, a 
patient was considered in the MaVasC state 
when a diabetic patient experienced an event of 
at least one MaVasC, such as peripheral artery 
disease, coronary artery disease, or stroke. The 
individual status of vascular complications was 
recorded only during clinical visits. Therefore, 
the exact date of an event is unknown (interval 
censoring). The right censoring time for each of 
the states (events) was measured for individuals 
who did not develop any of the complications 
during the follow-up period or were lost to 
follow-up.

Statistical Analyses

The baseline characteristics of the study 
participants were reported using descriptive 
statistics. A semi-parametric multistate 
model was applied to assess the relationship 
between the clinical conditions of patients 
and to determine the effects of covariates on 
individual states. The data were first entered 
into Microsoft Excel sheets and exported to R 
statistical software.25 The mstate package in R 
software, which was developed by de Wreede et 
al.,14 and the survival package written by Terry 
Therneau and Lumley26 were used to carry out 
all analyses and generate graphs.

State Structure for Diabetic Complications

States were distinguished by vascular 
complication type and death. To formally 
describe the state structure of this study, we 
let "MiVasC", "MaVasC", and "died" denote 
T2DM patients who experienced microvascular 
compilation, macrovascular complications, and 
death, respectively. The state structure, which 
specifies the states and possible transitions, 
is shown in Figure 1. A patient who was 
complication-free was at risk of developing 
micro-or macro-vascular complications, or 
died with or without developing vascular 
complications at some time during the 
retrospective follow-up period.

Missing Data Analysis

The potential risk factors associated with T2DM 
were included in the transition intensity of the 
model as covariates. However, some values 
of the covariate were missing due to different 
reasons. Ignoring the presence of missing data 
might produce biased estimates that lead to 
a false conclusion when missing data are not 
missing completely at random (MCAR),27 and 
even if the data are MCAR, dropping a large 
proportion of the data results in a substantial 
loss of information.28 
 To account for missing values in the  covariates, 
we employed multiple imputations28 to create 

Figure 1. State structure that specifies states and possible transition for diabetic patients to their status of vascular 
complications or death
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completed data sets with missing information 
filled in. This is an established and broadly 
accepted method to enhance data sets with 
missing information.29 There are several 
methods that can be used to handle missing 
data that are based on the assumptions of 
the type and degree of ‘missingness’ in the 
dataset. R packages including Amelia II (uses 
Bootstrap EM ),30  Multivariate Imputation 
using Chained Equations (mice),31  VIM,32 and 
missForest33 can be used to perform  imputing 
missing data.  For this analysis, the missForest 
R package was chosen as  it was shown by 
Waljee et al.(2013) that it outperforms other 
well-known methods, and it is suitable for 
mixed-type data.34 In missForest, missing 
values are imputed following the procedures 
and guidelines outlined in.35

Multistate Model for Diabetic Complication 
data

Multistate models are routinely used in research 
where a change in status over time is of interest. 
They have a wide range of applications, notably 
in chronic disease progression studies such 
as chronic vascular complications in diabetes 
patients where the study units reversibly or 
irreversibly move through a succession of 
events or states.15, 24 It provides  the opportunity 
to give a detailed description of the several 
states that individuals usually go through 
during a life course with type 2 diabetes.36

Let Mi(t)  be the assumed state of individual i, 
where i = 1, 2,  . . . , n at the instant t = 1, 2, . . ., 
γ  with respect to patient's T2DM complication 
status. Under the Markov assumption, the 
probability of an individual i moving from an 
h state to a j state in an interval δt given the 
patient’s history (Hh−) is defined as:

       (1)
If state h is not persistent, then Phj(s, t) ≥ 0 
for   and Phj(s, t) = 0 for h=j. Otherwise, if 
state h is persistent, Phj= 0.  The transition 
intensity between states h and j is defined by 
equation (2)

                   (2)
Semi-parametric Multistate Model

The covariates in multistate models are often 
incorporated through transition intensity 
functions to explain differences among 
individuals during disease progression. One 
popular choice is the semi-parametric Cox 
regression model.37 Under the proportional 
hazard assumption, the effect of a unit increase 
in a covariate is multiplicable with respect to 
the hazard rate.38  According to de Wreede, 
Fiocco,14 Andersen PK,39 a time- homogeneous 
multistate model with proportional intensity 
having the transition-specific hazard, has the 
following form:

                   (3)
Here, λij0(t) is the baseline i → j transition 
intensity, which is common for all individuals 
and specifies how the intensity changes with 
time, while βij and Z are vectors of unknown 
regression coefficients and covariates, 
respectively, from the ith state to the jth state 
transition. The model specified in Equation 
(3) is a parametric model when the baseline 
hazard specified by  λij0(t) takes a functional 
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form. However, the covariates may be 
time-dependent, and the model becomes a 
nonhomogeneous Markov process.40

The model in Equation (3) assumes that 
the process is Markovian and is known as a 
Cox Markov model. Several limitations are 
encountered when ignoring the disease history. 
Therefore, an alternative approach is to use 
Cox semi-Markov models in which the future 
of the process depends on the duration of the 
patient  in the current state rather than the 
current time.29 Such models are also referred to 
as "clock reset" in which the time t in λhj (t) is 
considered the time duration from the entrance 
of the patient to the state h.17  The semi-Markov 
process considers that the sojourn time of 
transition from one state to another depends 
on the time already spent in the current state, 
which is the most important assumption in 
medical data.41  The semi-Markov model for 
the progression of diabetic complications is 
specified in Equation.4

                   (4)
where Tij is the sojourn time spent in the ith 

state and 1 ≤ i ˂ j ≤ 4.40

Estimation Techniques

Under the Markov assumption, the 
nonparametric estimation of the transition 
probability matrix can be expressed as a 
function of the transition intensity in the form 
of a product integral42

  
 

                   (5)

where ˆ
ij Λ =  Ë  is called the Aalen-Johansen 

estimator. The Aalen-Johansen estimator, 
which uses the mathematical framework of 
multivariate counting processes, reduces to 
simple empirical proportions for the complete 
data.
Let Nhj,i be a counting process that counts the 
number of i’s patient direct transitions (without
visiting another state in between) from state h 
to state j up to time t, where  h, j ϵ 1, . . . , 
4 and h ≠ j. Here, time t represents the time 
measured from the initial state, which is the 
complication-free state. Let  Yj (t) refer to the 
number of individuals to be observed at risk in 
a state just prior to time t.
Then the conditional transition probability is 
specified using Equation (6).

                   (6)
where ∆Nhj gives the number of  h → j 
transitions observed exactly at time t.
Kalbfleisch and Lawless43 and later Kay  R44 
described a general method for evaluating 
the likelihood of a general multistate model 
in continuous time, applicable to any form of 
transition matrix. The maximum likelihood that 
can be used to estimate the model parameters 
specified in Equation (3) is presented in 
equation (7) below. The partial likelihood 
function takes the product overall individuals 
and time points, as shown in equation (7).

                   (7)
where thj,k is the failure or censoring time of 
individual k for transition h→j, dhj,k = 1, the 
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individual k has an event for transition i → j, 
0 otherwise, and Rh(t) is the risk set of state 
h at time t, that is, the set of individuals who 
are in state h at time t (t in this case is the time 
since the entry in state h). The estimate of the 
cumulative baseline hazard of transition i→j is 
the Nelson-Aalen estimate45 

                   (8)
which is the proportion of the number of 
observed h → j transitions at tk to the number 
of individuals at risk in state h just prior to tk 
with h, j = r, h ƒ= j. In (4), the summation is 
over all event times tk, which are less than 
or equal to time t. Left truncation and right 
censoring are naturally accounted for in the 
denominator.  The risk set in Equation (8) 
includes all individuals who have  entered state 
h before time  t and who have not yet moved 
out of state h again, provided that they have 
already entered the study (left-truncation) and 
are still under observation (right-censoring).

Results

Baseline Demographic and Clinical 
Characteristics of the Study Participants

The characteristics of 524 T2DM patients 
who were followed retrospectively from 
January 1, 2005, to December 31, 2017, are 
presented in Table 1 to assess their time for 
vascular complications or the date of death, 
whichever occurred first. All patients were 
free of T2DM-related complications when 
they first entered into follow-up. The median 
follow-up time was 7.4 with an interquartile 
range (IQR) of 6.01-10.02, implying that 

50% of the patients had been under follow-
up for at least 7.4 years.   According to the 
results in Table1, the majority (66.27%) of 
patients with T2DM were men. Microvascular 
complications were present in 19% (n= 33) 
and 18% (n=66) of female and male diabetic 
patients, respectively; while 23% (n=40) 
of female and 21% (n=70) of male patients 
developed MaVasC's; 13% (n=23) and 18% 
(n= 62) of female and male diabetic patients, 
respectively died due to diabetes-related 
complications. In addition, 10% (n=18) of 
female and 11% (n=37) of male patients 
developed both MiVasC and MaVasC. The 
percentage of females with T2DM who 
experienced MaVasC was higher than that 
of males. The percentage of female patients 
with diabetes who experienced MaVasC was 
higher than that of their male counterparts. 
This revealed that female patients with 
diabetes were more likely than their male 
counterparts to develop chronic diabetic 
complications than their male counterparts. 
However, men were more likely to die from 
diabetes-related complications than their 
female counterparts.  The majority (66.6%) 
of the patients were from urban areas.  As 
for the distribution  of diabetic patients 
regarding their vascular complication status 
and their death status, the percentage of rural 
dwellers who developed MiVasC, MaVasC, 
and died was consistently higher than that 
of urban dwellers. However, the effects 
of sex and residence on the differences in 
proportions were not statistically significant. 
More than half of the patients, 278(58.3%), 
had baseline blood pressure values of 
≥140/90mmHg, whereas the remaining 
199 (41.7%) patients had <140/90mmHg 
baseline blood pressure values.  Moreover, 
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Table 1. Status of diabetic patients regarding vascular complication status and death

Covariates All patients,
n (%)

Status at the end

MiVasC, n (%) MaVasC, n (%) Died, n (%)
Sex

Female 172 (33.73%) 33 (19%) 40 (23%) 23 (13%)

Male 338 (66.27%) 61 (18%) 7 0(21%) 62 (18%)

Residence

Rural 170 (33.4%) 37 (22%) 36 (21%) 34 (20%)

Urban 279 (53.24%) 59 (17%) 69 (20%) 52 (15%)

BP category

< 140/90 mmHg 199 (41.7%) 32 (11%) 30 (11%) 27 (10%)

≥ 140/90mmHg 278 (58.3%) 66 (33%) 73 (37%) 59 (30%)

Family history of diabetes

Yes 353 (68.3%) 47 (13%) 56 (16%) 49 (14%)

No 164 (31.72%) 49 (30%) 52 (32%) 37 (23%)

serum creatine level

> 1.2 mg/dL 64 (18.7%) 18 (28.13%) 24 (37.50%) 23 (35.94%)

≤ 1.2 mg/dL 289 (81.3%) 56 (20.07%) 86 (18.70%) 64 (13.94%)

Table 2. Characteristics of type II diabetic patients classified by patient state

Covariates All Patients,
Median(IQR)

States at the end, Median(IQR)

MiVasC MaVasC Dead
Age at diagnosis, years 52 (19 ) 58 (15) 60 (14) 65 (13)

Glucose level ,mg/dL 260 (154.00) 274.5 (108) 230 (110.5) 257 (112)

Systolic BP, mmHg 120 (20) 142 (23) 138 (30) 141.5 (31)

Diastolic BP, mmHg 82 (19) 84.5 (14) 83 (14) 89.5 (12)

Serum creatinine, mg/dL 0.88 (0.39) 0.98 (0.35) 0.96 (.63) 0.96 (.61)

Duration with DM, years 7.9 (4.01) 8.24 (5.4) 8.31 (3.4) 8.76 (.67)

HbA1c (%), 12.1 (3.45) 14.8 (8.4) 16 (6.1) 15.4 (4.13)

HDL, mg/dL 51 (27) 44 (39.75) 43 (25) 41 (11)

LDL, mg/dL 93 (55.50) 88 (36) 111 (53) 93 (42.75)

Triglycerides, mg/dL 4.2 (1.28) 137 (104) 136 (81) 146 (97.5)

Serum sodium, mEq/L 141 (10.50) 402 (199.5) 402 (0) 402 ( 266)

Serum potassium, mEq/L 4.2 (1.28) 4.89 (0.52) 4.89 (0.77) 4.55 (0.69)

Serum chloride, mEq/L 105.5 (11.5) 96.5 (8.63) 96.5 (0) 96.95 (11.5)
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the percentage of hypertensive T2DM 
patients (≥140/90mmHg) who developed 
MiVasC or MaVasC was higher than their 
non-hypertensive counterparts, suggesting 
that hypertensive diabetic patients were more 
likely to experience vascular complications 
than non-hypertensive patients. The log-rank 
test for all states (events) showed a statistically 
significant effect on blood pressure. From the 
353 diabetes patients whose creatinine level 
was reported, 64(18.1%) patients were with 
elevated baseline serum creatinine (>1.2 mg/
dL) and the rest 289 (81.9%) had normal 
serum creatinine (≤1.2 mg/dL). 
Table 2 presents the median values of 
continuous predictors classified according to the 
clinical status of T2DM patients.  Accordingly,  
the median age of the patients at the time of 
T2DM diagnosis  was 52 years (IQR=19). The 
median triglyceride and creatinine levels were 

Figure 2. Possible transition and prevalence of diabetic complications among diabetic patients. 
MiVasC, T2DM patients with micro-vascular complications; MaVasC, T2DM patients with macro-vascular complica-
tions; MiVasC & MaVasC, T2DM patients with both micro- and macro vascular complications; PAD, Peripheral artery 
disease;  CHD, Chronic heart

obtained to be 170 mg/dL (IQR=100.5 mg/
dL) and 0.88 mg/dl (IQR = 0.39), respectively. 
The median fasting blood sugar and glycated 
hemoglobin percentage levels were 264mg/dl 
(IQR=154mg/dl) and 12.1(3.45), respectively.
Figure 2 provides information about the 
frequency of major micro- and macrovascular 
complications in patients with T2DM in 
the study area. According to the results in 
Figure 2, during an average follow-up period 
of 7.4 years, 152 (29%) of diabetic patients 
developed either MiVasC or MaVasC vascular 
complications, and 55(10.5%) of them 
diagnosed with both MiVasC and MaVasC. 
Specifically, during the follow-up time, T2DM 
patients had a probability of 0.14 and 0.15 
to move into MiVasC and MaVasC states, 
respectively.  
Moreover, from the 73 T2DM patients who have 
already developed vascular complications, 
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18 of them developed macrovascular 
complications, revealing that T2DM patients 
who have already developed MiVaC had a 
0.25 probability to develop MaVasC following 
MiVasC. Similarly, from the 79 T2DM patients 
who have already developed MaVasC had, 
25 of them experienced MiVasC, showing 
that  T2DM patients had  a 0.32 chance 
to experience MiVasC disease following 
MaVasC. Among T2DM patients who 
experienced microvascular complications, 
the proportion of retinopathy, nephropathy, 
and neuropathy was 34.2%,30.2%, and 35.6% 
respectively. On the other hand, the cases of 
stroke, chronic heart disease (CHD), and 
peripheral artery disease (PAD), respectively, 
accounted for 20.3%, 35.4%, and 31.6% of the 
total macrovascular cases. Furthermore, the 
probability of T2DM patients dying due to other 
causes (dying without developing vascular 

complications) is 0.15. Similarly,  T2DM had  
0.15 and  0.27 probabilities of dying once they 
experienced microvascular and macrovascular 
complications, respectively.

Exploring  Patterns of Missingness

The heatmap produced using vis_miss() 
from Visdat package46 provides a pattern and 
percentage summary of missingness for each 
variable or column is shown in Figure 3.  This 
plot helps the visualization of the pattern of 
percentages of missing values distribution.47 
It can be seen from Figure 3   that 8 covariates 
have a missing value with a very small 
proportion, whereas 7 variables including 
fasting serum lipids (HDL, LDL, total 
cholesterol), glycated hemoglobin percentage 
(HbA1%), and serum electrolyte (potassium, 
sodium, chlorine levels) have an extraordinary 

Figure 3. Heatmap visualization of missing data for the T2DM data 
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proportion of missing data. The proportion 
of missing data should not be used to guide 
decisions on multiple imputation.48 Therefore, 
we  decided to take out the seven covariates  
and rather work with the other  covariates that 
have  less proportion missing data and can 
be successfully imputed.29 Imputation can be 
more precise if other variables are non-missing 
for those cases that are to be imputed.49 

Nonparametric Analysis of Transition 
Intensity Rates and Probability

Figure 4 presents the estimated transition 
probabilities from all starting states to all 
possible states, between the starting time t = 0 
and all event times successively. The first panel 
(a) provides a plot of transition probabilities 
from state 1. It is observed from this figure 
that the estimated probability of staying in 
the same state decreases with increasing 

Figure 4. Prediction of transition probability with time to vascular complications for diabetic patients starting from each 
state at t = 0, where 1=complication free; 2= microvascular complications; 3= macrovascular complications; 4= death

time. A sharp drop in the probability of being 
remaining in the same state (state) reveals that 
the probability of staying free from diabetes-
related complications during their follow-up 
period decreases with time. The probability 
of remaining free from any complication is 
estimated at 0.76 at 5 years and 0.4 at 10 years. 
Moreover, the median complication-free time 
was 8.85 years, where 50% of T2DM patients 
are estimated to survive being free from any 
diabetes-related complications for a duration of 
8.85 years since  their first time diagnosed with 
diabetes. The probability of the T2DM patient 
moving into state 4 (death state) increases 
with time. More specifically, the probability of 
T2DM patients dying due to diabetes-related 
complications was estimated to be 0.02 and 
0.039  at 5 years and  10 years, respectively. 
It was also revealed in the figure that the 
patient had an increased probability to move 
into a micro-and macrovascular complication 
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state from the beginning of the follow-up. 
However, the curve becomes stable for the fact 
that patients will understand the danger of the 
disease as time passes and modify their lifestyle, 

Figure 5. Plot of a scaled  Schoenfeld residuals for testing the proportionality assumption

and they improve their adherence to the drug. 
The second and the third panels of the figure (b 
& c) provide the transition probabilities from 
state 1 and state 2, respectively. Both figures 
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revealed that the probability of staying in the 
same state monotonically decreased with time, 
whereas the probability that DM patients move 
to the next state increased with time.

Multistate Model Results

Model Building and Assumption Assessment
After imputation, a multistate Markov model 
was fitted to the imputed data. The four states 
of the multistate Markov model include 
complication-free, MiVasC, MaVasC, and 
death (Figure 1). The death state is an absorbing 
state. To begin the model fitting process, we 
used the likelihood ratio test if the fitness of 
the model was improved after incorporating all 
sojourn times in different states. The likelihood 
ratio test showed that the fitness of the model 
to explain the data was significantly improved 
after incorporating the sojourn times, revealing 
that the Markov assumption was violated, 
and hence the transition hazards/intensities 
dependent on the time spent in the current state.
To improve the prediction of the transition 
probabilities, baseline predictors were 

considered. To select important predictors, 
covariates that were statistically significant at 
10% level of significance in the univariable 
model with at least one transition were included 
in the higher (multivariable). Accordingly, 
age at the onset of diabetes, residence 
(rural or urban); blood pressure category 
(<140/90mmHg or ≥ 140/90 mmHg), family 
history of diabetes, triglyceride level, baseline 
hemoglobin level, and serum creatinine level 
were significant at the fixed level of significance 
in the univalent model. Hence, the remaining 
covariates were not included in the final model. 
The assumption of proportional hazard or time 
homogeneity for the transitions needs to be 
checked to see if it is reasonably fulfilled for 
our data. To check the model assumption, both 
formal tests and graphical plots can be used. 
For this analysis, we used graphical plots (as 
shown in Figure 5) to check the assumption. 
The plots look fairly flat, revealing that the 
assumption of proportionality is not violated 
provided that the plots are decidedly different 
from flat.
However, a formal test using the cox.zph 

Table 3. Table showing the proportional hazard assumption check

Covariates Chisq df P Does proportionality 
assumption hold?

Residence (Urban) 7.39 1 0.01 No

Blood pressure(<140/90) 1.01 1 0.32 Yes

Age at diagnosis 0.95 1 0.33 Yes

Baseline glucose level 1.71 1 0.19 Yes

Creatinine level 3.85 1 0.05 No

HbA1c (%) 1.15 1 0.28 Yes

Triglycerides 0.55 1 0.46 Yes

Family history of diabetics 1.13 1 0.29 Yes

GLOBAL 16.73 8 0.03 No
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function in the survival package R software 
was used to generate the p values of the tests 
based on the scaled Schoenfeld residuals 
for non-proportional hazard assessment and 
the output of the test presented in  Table 3. 
Based on the output generated, all tests except 
for two covariates (residence and baseline 
creatine level) have shown non-violation of 
the proportional hazards assumption. The 
fitness, as well as the violation proportionality 
assumption, were improved when a model 
whose transition intensities to death (transitions 
specified by 4) are assumed to be proportional 
to the baseline hazards.

Checking the Markove Assumption 

The duration of patients with T2DM (sojourn 
time in the diabetic complication-free state) 
was included as a prognostic covariate  to test 
if  it has a statistical significant relationship 

with the transition to death state from MiVasC 
or  MaVas C. The fact that the sojourn time 
of patients had a significant association 
with the transition of the next transition 
of the model revealed an evidence that the 
Markov assumption is not valid. This calls 
for semi-Markov models as an alternative 
model for the analysis. The model’s output is 
presented in Table 4 in which P-values and 
hazard ratio (HR) values of the predictors 
having statistically significant association 
(at 5% significance level) with the states 
are italicized. According to the model’s 
results, keeping the effects of predictors in 
the model constant, an increased age at the 
time of diabetic diagnosis was associated 
with increased transition intensity into the 
death state. More specifically, a year increase 
in the age of patients at T2DM diagnosis 
corresponds to a 9% increase in the death 
of T2DM patients without experiencing any 

Table 4. Hazard Ratios  and P-values for the final stratified Cox model

Covariates
Possible transitions

1− > 2 1− > 3 1− > 4 2− > 4 3− > 4
HR P HR P HR P HR P HR P

Residence Rural (ref)
Urban 0.31 0.85 4 0.68 2.1 0.01 3.44 0.47 1.31 0.05
Triglycerides 0.98 0.46 1 0.12 1 0.7 1.97 <0.001 1 0.64
Age 1 0.93 1.06 0.35 1.09 0.03 2.1 0.01 3.14 0.01

Blood pressure category
Hypertensive 6.24 0.04 5.2 0.008 2.13 0.019 10.81 0.04 0.3 0.37

Family history of diabetic
Yes 1.94 0.6 1.95 0.08 1.26 0.09 1.81 0.4 4.3 0.03
Creatinine 1.4 0.66 2.32 0.18 1.07 0.95 214.469 0.044 1.86 0.67
Baseline glucose 
level

1.007 0.002 0.996 0.106 0.992 0.155 1.004 0.343 1.003 0.937

Duration with T2DM - - - - - - 1.7 3 <0.001 14.01 0.08
1: Complication free state. 
2: Microvascular complication state.
3: Macrovascular complication state. 
4: Death.
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complications (or complications might not be 
detected). Moreover, a year increase in the 
age of T2DM patients at the time of diagnosis 
increases the risk of dying by a factor of 2.1 
and 3.14 times for patients with microvascular 
and macrovascular, respectively, showing that 
an increased age at diagnosis corresponded 
with the risk of earlier vascular complications 
onset and death. The effect on the event of 
death was pronounced more after T2DM 
patients experienced vascular complications 
of either type. However, age at diagnosis 
showed no significant difference in the 
transition rate between type II diabetic patients 
in micro-or macrovascular complication 
states. Similarly, baseline blood glucose level 
was a statically significant predictor of the 
transition of patients into a microvascular 
complication state such that an increased 
baseline glucose level had an increased risk 
of developing microvascular complications. 
Furthermore, rural dwellers were more 
likely to move into the death state from the 
complication-free state (HR=2.1, P=0.01) 
and from the microvascular complication 
state (HR=1.31, P=0.05). Type II diabetic 
patients with a family history of diabetes had 
more likely to move from the macrovascular 
complication state into the death state. The 
presence of hypertension is a risk factor for 
the development of vascular complications 
or death. Hypertensive patients, for example, 
were 2.13 times more likely to move to 
the death state from the complication-free 
state compared to non-hypertensive DM 
patients after sole adjustment of predictors 
in the model. Besides, from the final model, 
we summarize that the time spent in the 
complication-free state (duration of diabetes) 
has a prognostic impact on the transition from 

macrovascular complication to death.

Discussion

Multistate models provide a flexible 
framework for understanding clinical events 
under consideration of the disease process 
as a whole, not only focusing on one single 
endpoint, like the classical Cox regression 
model.23 In the applications of multistate, 
the dependence on the history of the process 
is negligible and gives sense to assume the 
Markov property,  where the state sojourn 
times follow the exponential distribution 
with a constant hazard rate.50 However, in the 
study of  chronic disease, Markov assumption 
is unrealistic. For instance, in the study of 
T2DM disease progression, the disease stages 
may not follow a constant hazard rate. As a 
result, Semi-Markov models are applied for 
modeling a variety of phenomena in different 
areas,51 such as the progression of breast 
cancer,29 engineering,52 and different chronic 
disease progression.53  
 In this study,  we used Semi-Markov 
model to  model multistate chronic disease 
transitions by taking into consideration of 
the length of time that patients have stayed 
in a certain disease state, which is clinically 
more plausible.  Semi-Markov models are 
applicable to degenerative diseases, while 
Markov models are applicable to epidemic 
diseases.54 
   Therefore, a semi-Markov multistate 
model was adapted using the clock-reset 
approach to study the effects of different 
covariates on transit to the next state. During 
an average of 7.4 years follow-up period, 
nearly 28% of diabetic patients developed 
vascular complications of either type, which 
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slightly higher than what has been previously 
reported by Wolde et al.13 based on data from 
the University of Gondar Referral Hospital, 
Ethiopia, but lower than the study conducted 
in China.55 The difference in the length of 
the follow-up period and the age groups of 
the study participants could be the reason for 
such discrepancy. Duration of diabetic illness 
was associated with an increased risk of 
death. The same findings were reported by.56, 

57 An increased age at diagnosis corresponded 
with the increased likelihood of death. 
This feeding is in line with the findings by 
Kidanie, Alem,12 Wolde, Atsedeweyen,13 
Zoungas, Woodward,55 which was conducted 
in Ethiopia and Li, Chattopadhyay56 in China. 
This could be due to the fact that aging results 
in relative insulin resistance, cell dysfunction, 
altered glucose metabolism, associated 
hormonal changes, and decreased physical 
activity,58, 59 which in turn leads to death.56 In 
our study, women were more likely than men 
to develop chronic diabetic complications, 
although sex was not a significant predictor of 
diabetic complication status. This is because 
women are subjected to a partial loss of 
estrogen protection normally present in the 
premenopausal state.60 In this study, being 
hypertensive was higher in the transition 
into microvascular and macrovascular 
complications as well as death state. This 
result is supported by Li, Chattopadhyay,56  
Agrawal, Ola,61 and Tracey, McHugh.62

Conclusion

Multistate models are good statistical 
methods for exploring predictors and multiple 
interrelated events by controlling their 
dependence. In this study, the semi-Markov 

model fitted the data well and could be taken 
as a convenient model for the analysis of time 
to diabetes-related complications or death in 
this particular data. Moreover, blood pressure, 
age at diagnosis of diabetes, and diabetes 
duration are were predictors of vascular 
complications and death. The percentage 
of diabetes-related complications and their 
consequences, clearly death, is not small, 
although the study needs to be confirmed by 
using an adequate sample. Thus, appropriate 
prevention and control strategies should be 
in place to limit further progress and impact. 
The current results could also be taken as a 
baseline for others who aim to explore the 
occurrence of vascular complications as a 
function of different risk factors in individuals 
with T2DM.
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