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Introduction: A rigorous multiobjective optimal control strategy (that does not require the use of 

weighting functions) of the epidemic models that consider vaccination and treatment strategies is presented. 

Modifications of the standard susceptible-infectious-removed, susceptible-exposed-infectious-removed, 

and the modified susceptible-infectious-removed models are dynamically optimized to minimize the 

number of infected individuals while, controlling the rate at which the individuals are vaccinated and 

treated. 

Method:The optimization program, Pyomo , where the differential equations are automatically converted 

to a Nonlinear Program using the orthogonal collocation method is used for performing the dynamic 

optimization calculations. The Lagrange-Radau quadrature with three collocation points and 10 finite 

elements are chosen. The resulting nonlinear optimization problem was solved using the solver BARON 

19.3, accessed through the Pyomo-GAMS27.2 interface. 

Results: The computational results how that the multiobjective optimal control profiles generated by this 

strategy are very similar to those produced when weighting functions are used.  

Conclusion: The main conclusion of this work is to demonstrate that one can perform a rigorous dynamic 

optimization of epidemic models without the use of weighting functions that have the potential to produce 

some uncertainty and doubt in the results, in addition to dealing with unnecessary additional variables. 

 

 

Introduction 

Epidemiological models that simulate the 

spread of infectious diseases, are necessary to 

understand the dynamics of the spreading of 

the infection and to take steps that will result 

in the minimization of the number of infected 

people. In order to minimize the spreading of 

the infections one must perform dynamic 

optimization calculations and 

computationally obtain the parameters that 

will result in the minimum value of the 

number of infected subjects. 

Epidemiological models have been 

developed by many researchers to enable the 

understanding of the dynamics of these 

diseases. Ronald Ross (1) (1908) 

demonstrated that mosquitoes transmit 

malaria and developed the first mathematical 

model for malaria transmission. After the 

Second World War, Macdonald picked up 

where Ross left off and focused on 
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developing a highly applied theory to 

complement the global public health rollout 

of Dichloro Diphenyl Trichlorethane (DDT). 

The state of mathematical theory was 

solidified by Macdonald(2) and in the 1960s 

by Garrett-Jones (3, 4).This work has 

motivated the use of mathematical methods 

(5, 6) to quantitatively understand issues 

pertaining to biology, medicine and 

infectious diseases. Other significant work 

concerning dynamic models was conducted 

by considered a general model(7-19), with 

the population of susceptible and infectious 

human’s assumed constant, and facing only 

one virus. Esteva and Varga (16-19) also 

proposed models that considered the effects 

of the exponential growth of the human 

population, a constant disease rate, and two 

serotypes of the virus. Additionally, 

significant work pertaining to 

epidemiological modeling was done (20, 21). 

A lot of work on epidemic models was done 

by Hethcote and co-workers (22-25) where 

the effects of the variation of parameters was 

studied. Optimal control of epidemiological 

models was performed by a few researchers 

(15, 26, 27). Brauer (28) considered epidemic 

models involving asymptomatic, 

quarantined, and isolated individuals and 

discusses the compromise between 

vaccination and treatment. Gaff et al (29) 

performed multiobjective optimal control 

using weighting functions for SIR 

(susceptible-infectious-removed) SEIR 

(susceptible-exposed-infectious-removed, 

and SIRS (modified susceptible-infectious-

removed) epidemiological models that 

included terms that account for vaccinations 

and treatment. S represents susceptible 

individuals, E and I represent the exposed 

and infected individuals while R represents 

the removed individuals who have overcome 

and have immunity from the infection. In this 

work, rigorous multiobjective optimal 

control without using weighting functions for 

these models is performed and it is shown 

that the resulting profiles are very similar to 

those obtained by Gaff et al (29). Gaff et al 

(29) perform a single objective optimal 

control lumping all the objective functions 

using weighting functions. The aim of this 

paper is to perform a multiobjective optimal 

control where no weighting functions are 

used. In this paper, a single objective optimal 

control problem is initially solved for each 

objective function to generate a utopia point 

and the Euclidean distance from this point is 

minimized subject to all the constraints.  

This paper is organized as follows. First the 

SIR, SEIR and the SIRS models will be 

described. The multiobjective optimal 

control strategy is then presented. This will 

be followed by the results, discussion and 

conclusions. 

 

Epidemic models (Model Equations) 

The SIR model consists of the equations  

 

dS SI NS
N S

dt N K
      

 (1) 

( )
dI SI NI

I
dt N K

        
 (2) 

( )
dR NR

I S
dt K

      
  (3) 

Where N = S+I+R. The SEIR model 

equations are  

 

dS SI NS
N S

dt N K
      

 (4) 
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dE SI NE
E

dt N K
    

 (5) 

( )
dI NI

E I
dt K

        
 (6) 

( )
dR NR

I S
dt K

      
 (7) 

While the SIRS (here it is assumed that after 

a time period 

1

  subjects in the removed 

class return to the susceptible class) model is 

represented by the equations  

dS SI NS
N S R

dt N K
        

  (8) 

( )
dI SI NI

I
dt N K

        
 (9) 

( )
dR NR

I S R
dt K

        
 (10) 

All three models are discussed in Gaff et al29. 

Details and values of the parameters are 

given in table 1 

 

Table 1. Parameter values (Obtained from Gaff29) 

Name Description Value 

𝑆0 Susceptible population at t=0 4500 

𝐸0 Exposed population at t=0 498 

𝐼0 Infected population at t=0 499 (for SEIR model 1) 

𝑅0 Removed population at t=0 1 

K Capacity 5000 


 Growth rate 0.00004 

  Death rate 0-0.1/day 

  Incidence rate 0.05-0.55/day 


 Infect time 0.1/day 

  Rate of waning 0.001/day 

  Rate of transition 0.1/day 

1B
 Weighting function for I 1 

2B
 Weighting function for 

vaccination 

1000 

3B
 Weighting function for 

treatment 

1000 

𝑣 max Maximum vaccination rate 0.1 

max
 Maximum treatment rate 0.6 
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Multiobjective optimal control 

(MOOC)Strategy 

Gaff et al (29) use weighting parameters 

minimizing the number of people who 

become infected while at the same time 

controlling effort involved in vaccinating and 

treating the population. The functions that 

were part of the objective function were  

 

0

( )
ft

I t
, 

2

0

( )
ft

t
 and 

10 2

0

( )
( ) { ( )}

ft
R t

t
k


 . 

The function that was minimized was  

 

0

1 2

10 2 2

3

0 0

( )
( ) ( ) { ( }   ) ( )

f f ft t t

B
R t

I t t B tB
k

    
 

. 

In this paper no weighting functions are used. 

A single objective optimal control problem is 

initially solved for each objective function 

(30, 31) to generate a utopia point and the 

Euclidean distance from this point is 

minimized subject to all the constraints.  

For a multiobjective optimal control 

problem  

 
1 2 3 4 5min ( , ) ( , , , , .... )

( , )

( , ) 0

n

L U

L U

x u

dx
subject to x u

dt

h x u

x x x

u u u

      

 



 

  (11) 

the single objective optimization problems 

are solved independently minimizing each i  

(i=1,2,3…n) individually. This will lead to 

minimized values 

 
*

i  (i=1,2,3,..n) . Then the problem that will 

be solved is  

 

 

 

* 2

1

min { ( ) }

( , )

( , ) 0

n

i i

i

L U

L U

dx
subject to x u

dt

h x u

x x x

u u u

 




 



 

 



   (12) 

 

 

The optimization program, Pyomo (32), 

where the differential equations are 

automatically converted to a Nonlinear 

Program (NLP) using the orthogonal 

collocation method(33) is used for 

performing the dynamic optimization 

calculations. The Lagrange-Radau 

quadrature with three collocation points and 

10 finite elements are chosen. The resulting 

nonlinear optimization problem was solved 

using the solver BARON 19.3 (34), accessed 

through the Pyomo-GAMS27.2 (35) 

interface. BARON implements a Branch-

and-reduce strategy and provides a 

guaranteed global optimal solution. This 

procedure does not involve the use of 

weighting functions not does it impose 

additional parameters or additional 

constraints on the problem unlike the epsilon 

correction method (36). (A comparison is 

made with the weighting function methods 

and it is observed that although the objective 

function values are different the profiles of 

the optimized variables are very similar. 
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Results  

For the SIR model, when 0

( )
ft

I t
, 

2

0

( )
ft

t
 

and 

10 2

0

( )
( ) { ( )}

ft
R t

t
k


 were individually 

minimized, the minimized objective values 

were 453.636, 0.3272 and 0, For the weighted 

sum method, the minimized objective 

function was  

 

0

1 2

10 2 2

3

0 0

( )
( ) ( ) { ( }   ) ( )

f f ft t t

B
R t

I t t B tB
k

    
 

the minimized objective value was 780.909  

In this work, the objective function that was 

minimized was  

 

 
2 10 2 2 2 2

0 0 0

( )
( ( ) 453.636) ( ( ) { ( )} 0) ( ( ) 0.3272)

f f ft t t
R t

I t t t
k

       
 

 

and the minimized objective function value 

was 41.24.  The values of the minimized 

objective value are presented in Table 2. 

 
Table 2. Objective Values for SIR model 

Objective function Minimized value of Objective 

 

0

( )
ft

I t
  

453.636 

 
2

0

( )
ft

t
  

0.3272 

 
10 2

0

( )
( ) { ( )}

ft
R t

t
k


  

0 

 MOOC Method in this article 41.24 

Weighted function method 780.909 
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For the SEIR model, when 0

( )
ft

I t
, 

2

0

( )
ft

t
 

and 

10 2

0

( )
( ) { ( )}

ft
R t

t
k


 were individually 

minimized, the minimized objective values 

were 0.9090, 0.3272 and 0, For the weighted 

sum method, the minimized objective 

function was  

 

0

1 2

10 2 2

3

0 0

( )
( ) ( ) { ( }   ) ( )

f f ft t t

B
R t

I t t B tB
k

    
  

and the minimized objective function value 

was 328.181 In this work , the objective 

function that was minimized was 

 

 
2 10 2 2 2 2

0 0 0

( )
( ( ) 0.9090) ( ( ) { ( )} 0) ( ( ) 0.3272)

f f ft t t
R t

I t t t
k

       
 . 

and the minimized objective function value 

was 0.0879.  The values of the minimized 

objective value are presented in Table 3 

 
Table 3. Objective Values for SEIR model 

Objective function Minimized value of Objective 

 

0

( )
ft

I t
  

0.9090 

 
2

0

( )
ft

t
  

0.3272 

 
10 2

0

( )
( ) { ( )}

ft
R t

t
k


  

0 

MOOC Method in this article 0.0879 

Weighted function method 328.181 

 

For the SIRS model, when 0

( )
ft

I t
, 

2

0

( )
ft

t
 

and 

10 2

0

( )
( ) { ( )}

ft
R t

t
k


 were individually 

minimized, the minimized objective values 

were 453.636, 0.3272 and 0, For the weighted 
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sum method, the minimized objective 

function was  

 

0

1 2

10 2 2

3

0 0

( )
( ) ( ) { ( }   ) ( )

f f ft t t

B
R t

I t t B tB
k

    
 

the minimized objective value was 780.909  

In this work , the objective function that was 

minimized was 

 

2 10 2 2 2 2

0 0 0

( )
( ( ) 453.636) ( ( ) { ( )} 0) ( ( ) 0.3272)

f f ft t t
R t

I t t t
k

       
 

and the minimized objective function value 

was 41.24.  The values of the minimized 

objective value are presented in Table 4. The 

values of the minimized objective function 

were the same as in the SIR model. 

 

Table 4. Objective Values for SIRS model 

Objective function Minimized value of Objective 

 

0

( )
ft

I t
  

453.636 

 
2

0

( )
ft

t
  

0.3272 

 
10 2

0

( )
( ) { ( )}

ft
R t

t
k


  

0 

MOOC Method in this article 41.24 

Weighted function method 780.909 

 

Discussion  

Figures 1a-1i, are profiles for the SIR model, 

2a-2i are for the SEIR model and 3a-3i for the 

SIRS model. Figures 1(a-c), 2(a-c) and 3(a-c) 

are the single objective optimal control 

profiles where the minimized objective 

functions were 0

( )
ft

I t
, 

2

0

( )
ft

t
 and 

10 2

0

( )
( ) { ( )}

ft
R t

t
k


 for the three models. A 

comparison of the figures 1d and 1e, 1f and  

1g, 1h and 1i, 2d and 2e, 2f and 2g, 2h and 2i, 

3d and 3e, 3f and 3g, 3h and 3i, demonstrates 



Sridhar LN.                                                                                                                                                                      Vol 7 No 1 (2021) 

Single and Multiobjective Optimal Control of Epidemic Models Involving Vaccination and Treatment  

 

32 

an insignificant difference between the 

profiles generated by the weighted function 

method and the MOOC method used in this 

paper. Hence it is shown that one can avoid 

the use of unnecessary weight functions to 

generate optimal profiles. This strategy 

enables us to control more than one 

parameter and be as effective as a single 

objective optimal control strategy.  

 

 

 

Figure 1. 1a – 1i 

 

 
Figure 2. 2a-2i 
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Figure 3. 3a-3i 

 

Conclusions 

The main conclusion of this work is to 

demonstrate that one can perform a rigorous 

dynamic optimization of epidemic models 

without the use of weighting functions that 

have the potential to produce some 

uncertainty and doubt in the results, in 

addition to dealing with unnecessary 

additional variables. This strategy will 

definitely be helpful when there are a large 

number of variables that need to be 

optimized. 
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