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Background: Calibration of clinical prediction models often entails assessing goodness of fit with independent, 

non-identically distributed Bernoulli random variables. We here investigate two statistics studied by Copas in 

this setting.  

Materials and Methods: We present distribution theory and a simulation study to compare the operating 

characteristics of the Copas statistics.  

Results: In our simulation study with relatively small sample sizes, we found a simple Cornish-Fisher 

approximation tail quantiles of the distributions of the Copas statistics to perform adequately. Upon illustrating 

their use in a calibration study relating to prediction of atherosclerotic cardiovascular disease risk, power 

properties appear to reflect differential weighting accorded to observations, as evinced with other goodness-of-

fit statistics. 

Conclusion: The Copas statistics are easily implemented, have proven value in other contexts, and appear to be 

underutilized in calibration studies. They ought to be part of the armamentarium of calibration tools for all 

researchers 

 

Introduction 

Clinical prediction models have been 

increasingly utilized in disease management 

for individualized risk assessment and 

treatment choice2. In this regard, prior to 

model adoption for routine application in 

clinical practice, the accuracy of the model 

predictions needs to be established, leading in 

turn to issues of validation relating to 

                                                 
* . Corresponding Author Email:JKoziol@prism-sd.org 

discrimination and calibration. 

Commonly used methods for assessment of 

performance of prediction models include the 

concordance or c statistic for discriminative 

ability3, and the Hosmer-Lemeshow chi-

squared test for goodness of fit or 

calibration4,5,6 . Various authors5,7,8 have 

pointed out elements of arbitrariness in these 

statistics, and development of novel or 
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refined alternatives to these statistics is an 

active research area.  

The Hosmer-Lemeshow test assesses the 

level of agreement between observed 

outcomes and model predictions (expected 

outcomes). Although originally designed for 

assessing goodness of fit of binary response 

models with logistic regression, it is also 

widely used for calibration of clinical 

prediction models2. Hosmer and colleagues5  

studied power properties of the Hosmer-

Lemeshow test, and found that two 

procedures suggested by Copas1 had 

reasonable properties for assessing goodness 

of fit with binary response models. In this 

note, we consider these two procedures, and 

a variant, in the context of assessing 

goodness of fit with binary outcomes. We 

examine their limiting distributions in the 

next section, then briefly investigate some 

power properties, which point to potential 

limitations. We give an example related to 

prognosis of atherosclerotic cardiovascular 

disease in Section 4, and conclude with some 

remarks.  

Methods: Theoretical Development 

Let Xi, i=1,...,n, denote independent 

Bernoulli random variables with respective 

success probabilities i. We will consider the 

following statistics: 
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Sn and Tn were investigated by Copas1. From 

linear algebra, Sn is the square of the 

Euclidean distance (also known as the L2 

norm) between the 1xn vectors X=(X1, X2, 

…, Xn) and =(1,2, … , n), and Dn is the 

Manhattan distance (also known as the L1 

norm) between the two vectors.  

 

Sn, Tn, and Dn are each sums of independent, 

non-identically distributed random variables. 

Unfortunately, closed form expressions for 

their distributions are in general intractable. 

Instead, we will initially rely upon the 

moments of these statistics to derive 

approximate distributions. It is easily shown 

that the moment generating functions (mgfs) 

for these statistics are 
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respectively. Means and variances of the 

statistics are straightforward; and, higher 

order moments of the statistics can be easily 

obtained from the mgfs or the corresponding 

cumulant generating functions. In particular,  
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We also have 

 
( )nE T n , 

  2 2

1

(1 )
( )

1

n
i i

n

i i i

Var T n
 

 

 
   

 


 

 2

1

(1 2 )

(1 )

n
i

i i i



 







, 

 

 

and,  

1

( ) 2 (1 )
n

n i i

i

E D  


 
, 

 
 2 2 2 2

1

( ) (1 ) (1 ) 4 (1 )
n

n i i i i i i

i

Var D      


     
 

2

1

(1 )(1 2 )
n

i i i

i

  


  
. 

 
By Lyapunov’s central limit theorem, if the 

i  are bounded away from 0 and 1, and not 

all equal to ½, the standardized statistics 

ZS=(Sn-ESn)/SD(Sn), ZT=(Tn-ETn)/SD(Tn), 

and ZD=(Dn-EDn)/SD(Dn) will each converge 

in distribution to the standard normal 

distribution as n increases (SD denoting 

standard deviation). 

 

We remark that if all the i are identically ½, 

then the distributions are simple point 

masses: Sn=n/4, Tn=n, and Dn=n/2, with 

probabilities one. Note in addition that for 

any Xiwith i = ½, there is no contribution 

from that term to any of ZS, ZT, or ZD. 

 

We also note the following relationship 

between Sn and Dn: with Bernoulli (0-1) 

random variables Xi, (Xi-i)
2 - i(1-i) = |Xi-

i| - 2i(1-i) , that is, Sn-E(Sn) =  Dn-E(Dn). 

It follows that the standardized variables ZS 

and ZD are numerically identical, though 

higher order moments will differ. 

 

For large n, the normal approximation to the 

exact distributions of these statistics should 

be sufficient, but might be improved on. 

Copas1 details a
2  approximation [that is,

2

ba ] for Sn and Tn, where a and b are 

obtained by matching the first two moments. 
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Further improvements might be possible with 

higher order moment corrections, e.g., 

Edgeworth or saddlepoint approximations. 

In this regard, we illustrate two 

straightforward approximations in a limited 

simulation  study,  as follows. For each n 

from 10 to 80 in steps of 10, we first 

constructed n x 1 probability vectors p by 

setting pi = i/(n+1), i=1,2,...n. We then 

generated 10000 independent n x 1 X vectors 

of 0's and 1's by randomly taking Xi ~ 

Bernoulli(pi), i=1,2,...n. We next calculated 

10000 Sn and Tn  statistics to determine their 

empirical distributions, based on the random 

X and fixed p vectors. 

 

Our first approximation to the distributions of 

Sn and Tn is the normal approximation, based 

on the exact means and variances of the 

statistics as given above. Our second 

approximation is based on the Cornish-Fisher 

expansion9. Briefly, given a “near normal” 

cumulative distribution function F, the 

Cornish- Fisher approximation for the value 

yp at quantile p of the F distribution is   yp ~ 

m + s*w, where m and s are the mean and 

standard deviation of the F distribution, and 

w is given by 
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and the kr are the cumulants of the 

distribution F. 

 

For each n, we calculated the estimated upper 

90th, 95th, and 99th percentiles of the 

distributions of Sn and Tn from both the 

normal approximation and the Cornish-

Fisher expansion, and determined the 

observed levels of these percentiles by 

comparison with the empirical distributions 

of Sn  and Tn we had previously generated. 

We plot these observed levels in Figure 1. 

The normal approximation tends to 

underestimate the percentiles for both Sn and 

Tn, an unsurprising finding given the marked 

skewness of the distributions of Sn and Tn for 

these small values of n.  On the other hand, 

even the simple three term Cornish-Fisher 

expansion we have used seems to estimate 

the percentiles of Sn rather accurately, but 

shows some variability with Tn at the 95th and 

especially the 90th percentile. 
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Figure 1. Achieved levels of the statistics Sn (A) and Tn (B) in a simulation study involving 

10000 replications of Sn and Tn at sample sizes n=10 to 80 in steps of 10. The levels were 

calculated using estimated critical values at alpha levels .90, .95, and .99, demarcated by 

solid horizontal black lines. The blue dashed lines depict the observed levels from critical 

values determined from normal approximations to the distributions of Sn and Tn, and the red 

dashed lines depict the observed levels from critical values determined from three term 

Cornish-Fisher approximations based on the cumulants of Sn and Tn. The normal 

approximations tend to underestimate the 90th, 95th, and 99th percentiles of Sn and Tn, 

whereas the Cornish-Fisher approximations generally estimate these percentiles fairly 

accurately. 

 

 

Operating characteristics 

In the previous section, we have discussed 

approximate distributions of Sn, Tn, and Dn 

when the Xi are independent Bernoulli 

A 
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random variables with success probabilities 

i. In a general goodness of fit scenario, the 

i would be known and prespecified. Let us 

consider an alternative hypothesis, that each 

of the i is shifted by a fixed, small positive 

amount .  How are the distributions of the 

statistics affected by this shift?  

We find that  
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under this shift. Note that, even if  is 

positive, the increments in means and hence 

E(ZS), E(ZT), and E(ZD) can be negative (e.g., 

if all i > ½) or 0 (again, trivially, if all i = 

½, or more generally if the i and ’ are paired 

so that i = 1-’). The upshot is, it may be that 

none of the Z statistics derived from Sn, Tn, 

or Dn will be sensitive to shifts in the 

magnitudes of the i, depending on the 

originally hypothesized values of the i. 
These statistics are not consistent against all 

global alternatives. 

 

We illustrate these points by simulation. 

First, we generated 1000 i from a uniform 

U(0, .45) or a U(.50, .95) distribution, then 

generated the Xi as Bernoulli(i) random 

variables, to calculate the empirical null 

distributions of ZS and ZT. We then shifted 

the i to the right by  = .05, and recalculated 

the sampling distributions of ZS and ZT under 

this shift. [The Xi are now Bernoulli(i+), 

but the null means and standard deviations 

are incorporated into ZS and ZT.] The 

resulting empirical histograms of ZS and ZT 

are given in Figures 2 and 3 respectively. 
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Figure 2. Empirical histograms of ZS, normalized to probabilities, under three scenarios. The 

middle histogram is derived from 1000 replicates of ZS in which, for each Zs, 1000 i were 

generated from a uniform U(0,.45) distribution, the Xi were Bernoulli(i) random variables, 

ESn and SD(Sn) were computed from these i,  plus 1000 replicates of ZS in which, for each 

ZS, 1000 i were generated from a uniform U(.5, .95) distribution, the Xi were again 

Bernoulli(i) random variables, and, ESn and SD(Sn) were computed from these i,. The middle 

histogram should approximate a standard normal [N(0,1)] distribution. Computing formulas 

are detailed in Section 2. The right histogram is derived from 1000 replicates of ZS in which, 

for each Zs, 1000 i were generated from a uniform U(.05, .50) distribution, the Xi were 

Bernoulli(i) random variables, but ESn and SD(Sn) were taken from the U(0, .45) simulations. 

The left histogram is derived from 1000 replicates of ZS in which, for each Zs, 1000 i were 

generated from a uniform U(.55, 1) distribution, the Xi were Bernoulli(i) random variables, 

but ESn and SD(Sn) were taken from the U(.5, .95) simulations.  
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Figure 3. Empirical histograms of ZT, normalized to probabilities, under three scenarios. The 

middle histogram is derived from 1000 replicates of ZT in which, for each ZT, 1000 i were 

generated from a uniform U(0,.45) distribution, the Xi were Bernoulli(i) random variables, 

ETn=1000, SD(Tn) was computed from these i,  plus 1000 replicates of ZT in which, for each 

ZT, 1000 i were generated from a uniform U(.5, .95) distribution, the Xi were again 

Bernoulli(i) random variables, and, ETn=1000, and SD(Tn) was computed from these i,. The 

middle histogram should approximate a N(0,1) distribution. Computing formulas are detailed 

in Section 2. The right histogram is derived from 1000 replicates of ZT in which, for each ZT, 

1000 i were generated from a uniform U(.05, .50) distribution, the Xi were Bernoulli(i) 

random variables, but ETn and SD(Tn) were taken from the U(0, .45) simulations. The left 

histogram is derived from 1000 replicates of ZT in which, for each ZT, 1000 i were generated 

from a uniform U(.55, 1) distribution, the Xi were Bernoulli(i) random variables, but ETn and 

SD(Tn) were taken from the U(.5, .95) simulations.   

 

 

 Both ZS and ZT are sensitive to the shifts, but 

in the case of U(.50, .95) shifting to U(.55, 1), 

ZS and ZT turn negative. The implication is 

that two-sided alternatives to the null 

distributions of ZS and ZT ought to be 

examined. The variability in the empirical 

distribution of ZT under the U(0, .45) to 

U(.05, .5) shift is also pronounced.  

 

We also looked at beta alternatives. We 

generated 1000 i from a uniform U(0, 1) 

distribution, then generated the Xi as 

Bernoulli(i) random variables, for the 

empirical null distributions of ZS and ZT. We 

examined two alternatives: (a) the i are from 
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a Beta(2,2) distribution; (b) the i are from a 

Beta(.5, .5) distribution. The Beta(2,2) 

distribution is symmetric and unimodal, with 

mode .5, whereas the Beta(.5, .5) distribution 

is symmetric U-shaped over (0, 1). The 

resulting empirical histograms of ZS and ZT 

are given in Figures 4 and 5 respectively. 

 

 

 
 

Figure 4. Empirical histograms of ZS, normalized to probabilities, under three scenarios. The 

middle histogram is derived from 1000 replicates of ZS in which, for each Zs, 1000 i were 

generated from a uniform U(0, 1) distribution, the Xi were Bernoulli(i) random variables, and 

ESn and SD(Sn) were computed from these i. The middle histogram should approximate a 

N(0,1) distribution. Computing formulas are detailed in Section 2. The right histogram is 

derived from 1000 replicates of ZS in which, for each Zs, 1000 i were generated from a beta 

B(2,2) distribution, the Xi were Bernoulli(i) random variables, but ESn and SD(Sn) were taken 

from the U(0, 1) simulations. The left histogram is derived from 1000 replicates of ZS in which, 

for each Zs, 1000 i were generated from a beta B(.5, .5) distribution, the Xi were Bernoulli(i) 

random variables, but ESn and SD(Sn) were taken from the U(0, 1) simulations.   
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Figure 5. Empirical histograms of ZT, normalized to probabilities, under three scenarios. The 

middle histogram is derived from 1000 replicates of ZT in which, for each ZT, 1000 i were 

generated from a uniform U(0, 1) distribution, the Xi were Bernoulli(i) random variables, 

ETn=1000, and SD(Tn) was computed from these i. The middle histogram should approximate 

a N(0,1) distribution. Computing formulas are detailed in Section 2. The right histogram is 

derived from 1000 replicates of ZT in which, for each ZT, 1000 i were generated from a beta 

B(2,2) distribution, the Xi were Bernoulli(i) random variables, but ETn and SD(Tn) were taken 

from the U(0, 1) simulations. The left histogram is derived from 1000 replicates of ZT in which, 

for each ZT, 1000 i were generated from a beta B(.5, .5) distribution, the Xi were Bernoulli(i) 

random variables, but ETn and SD(Tn) were taken from the U(0, 1) simulations.   

 

 

As with the previous example, ZS and ZT turn 

negative for one of the alternatives, here, 

when the i are from a Beta(.5, .5) 

distribution. Again, the ZT observations are 

widely dispersed for one alternative, 

Beta(2,2). Relative to power, Sn would likely 

be preferred over Tn  for these alternatives.  

 

An example 

The American College of Cardiology jointly 

with the American Heart Association have 

recently published a set of equations for 

estimating 10-year atherosclerotic 

cardiovascular disease (ASCVD) risk10. We 

will assess calibration of these risk equations 

in an independent cohort of        individuals 

enrolled in MESA (multi-ethnic study of 

atherosclerosis). MESA was funded by the 

US National Heart, Lung and Blood Institute 

to study preclinical atherosclerosis, with the 

intent of identifying risk factors involved in 

the progression of atherosclerosis to clinical 

ASCVD. A total of 6800 men and women, 

aged 45 to 84, and free of ASCVD at baseline 

examination, were recruited into the study 

between July 2000 and September 2002.  
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We chose a cohort of 6520 individuals from 

the study, with full information on 10 year 

outcomes and clinical characteristics 

allowing calculation of the ACC/AHA risk 

equations. Of these individuals, 930 

experienced an ASCVD diagnosis or event 

(including death) within 10 years, and 5590 

did not. A calibration plot depicting the 

frequencies of the observed and predicted 

events is given in Figure 6. There seems to be 

reasonable agreement between the observed 

outcomes and the predicted outcomes from 

the ACC/AHA risk equations, though higher 

frequencies do not seem fully in accord, as 

suggested by the lowess smoother. The risk 

equations perform adequately at 

discriminating between individuals with or 

without ASCVD events, with an area under 

the curve of .753. On the other hand, the risk 

equations slightly underestimate the total 

numbers of events, with an expected to 

observed ratio of .934 (868.8/930). 

 

 

 
Figure 6. Calibration plot of prediction performance of the ACC/AHA risk equations applied 

to an independent cohort of 6520 individuals enrolled in the Multi-Ethnic Study of 

Atherosclerosis (MESA). The outcome of interest is occurrence of atherosclerotic 

cardiovascular disease (ASCVD) within 10 years. Predicted risks were used to divide the 

cohort into 10 equally sized groups. 95% confidence intervals for the observed proportions of 

events are shown for each of the 10 groups. A lowess smoother15 is also depicted. Summary 

statistics O:E (observed:expected) = .934, and AUC (area under the curve) = .753, are also 

given. The figure was rendered in Stata 14 with the module PMCALPLOT16. 
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Note that the preponderance of predicted 

risks from the ACC/AHA risk equations is 

quite small as shown in Figure 7. The 

calibration plot shows this from the 

groupings, but from Figure 7 it should be 

clear that selection of cutpoints for the 

groups, as for example with the Hosmer-

Lemeshow chi-squared statistic, is somewhat 

arbitrary.  

 

 
Figure 7. Histogram of the ACC/AHA risk equation predictions for the cohort of 6520 

individuals in the MESA study. Summary statistics are also given. A beta function fit via 

maximum likelihood with estimated parameters a=.77, b=5.02 is depicted in red.  

 

We proceed to assess calibration of the risk 

equations with the statistics introduced in 

Section 2. Calibration in this setting devolves 

to assessment of goodness-of-fit, that is, how 

well the predicted risks i from the 

ACC/AHA risk equations accord with the 

observed outcomes Xi (Xi = 1 for an ASCVD 

event within 10 years, 0 otherwise), for the 

cohort of 6520 individuals indexed by i. 

Summary statistics are given in Table 1.  

 
Table 1.  Summary statistics for assessing goodness of fit of the ACC/AHA risk equations. 

 

Statistic Observed Expected Variance Z Statistic 

     

Sn 718.24 642.19 253.03 4.78 

Tn 9105.05 6520 164462.4 6.37 

Dn 1360.43 1284.38 253.03 4.78 
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Notes: Observed and expected values, and variances, were calculated using the formulas in Section 

2; the Z statistics are (Observed – Expected)/√(Variance). 

 

As noted earlier, the Z statistics for Sn and Dn 

are numerically identical. The statistic Tn 

provides the strongest evidence against 

goodness of fit. For comparative purposes, 

we also computed the Hosmer-Lemeshow 

statistic, after dividing the cohort into 10 

equally sized groups using predicted risks as 

in Figure 6. We found Hosmer-Lemeshow 

2 = 42.3, p<10-5, consistent with Sn and Tn. 

It appears that the ACC/AHA risk equations 

are not very well calibrated with this cohort, 

in general providing slight underestimates of 

true risks especially when the risk predictions 

are small.  

Discussion    

Generally, the Hosmer-Lemeshow statistic 

compares observed and predicted events in 

10 evenly spaced categories (deciles of risk). 

This is a convention and not a rigid rule, 

especially in situations in which the predicted 

risk is not evenly distributed across [0,1], as 

with the example in Section 4. Indeed, in a 

recent investigation that attempted to validate 

the ACC/AHA risk equations in a different 

cohort of nearly 11000 US adults11 , patients 

were categorized into 4 groups according to 

their 10-year predicted ASCVD risk: less 

than 5%, 5% to less than 7.5%, 7.5% to less 

than 10%, and 10% or greater. [With our 

cohort, this grouping would yield bins with 

frequencies 2109 (32.3%), 744 (11.4%), 583 

(9.0%), and 3084 (47.3%) 

respectively.]These authors also found that 

calibration for the overall population was 

poor: Hosmer-Lemeshow 2=84.2, p<.001, 

though the level of statistical significance 

might reflect in part the large sample size12.  

As with the Muntner et al. study11, calibration 

of clinical prediction models can involve 

sample sizes in the thousands, especially with 

data accruing from registries or long-term 

cohort studies. The standard normal 

approximations to the distributions of ZS, ZT, 

and ZD should be appropriate in such settings. 

On the other hand, it is perhaps unexpected 

that two-sided alternatives to these limiting 

distributions ought to be considered in 

practice.  One might alternatively invoke the 

chi-squared versions of these test statistics to 

avoid difficulties in interpretation.  

A second implication of potentially large 

sample sizes is that, in such settings, one 

should be cautious about conflating statistical 

significance with practical import. In our 

example, underestimating the ASCVD risk in 

individual patients might have serious 

repercussions for clinical care, but this should 

be tempered with the realization that for most 

patients, the absolute risk is extremely small 

(Figure 7). Motivating patients to change 

behavior on the basis of small perceived risk 

is a fraught enterprise.  

The two statistics Sn and Tn intrinsically 

differ in their weights assigned to the Xi: 

equal weights with Sn, but heavier weights 

for small or large i with Tn. Such differential 

weights are common with goodness-of-fit 

statistics, a close analog being Cramér-von 

Mises vs. Anderson-Darling quadratic tests 

based on the empirical distribution function. 

In the example in Section 4, ZT seems to be 

more sensitive than ZS to a purported shift in 

magnitude of the i. On the other hand, one 

can envision scenarios in which the 
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differential weighting incorporated into Tn 

might be viewed as a detriment relative to 

power, as with the beta alternatives in the 

simulation study, or to over-dispersion.   

We remark that the Copas statistic Sn is 

closely related to the Brier score13 Sn/n, 

which has been widely studied and utilized 

both in the statistics literature14 and in fields 

outside of traditional statistics15. There is no 

monopoly on these seminal ideas. 

In summary, the Copas statistics are easily 

implemented, have proven value in other 

contexts, and appear to be underutilized in 

calibration studies. Along with Hosmer-

Lemeshow, they ought to be part of the 

armamentarium of calibration tools for all 

researchers. 

Future Directions 

The Copas statistics have not enjoyed 

widespread interest in past years, and this 

brief study does not do them justice. In this 

regard, there are a host of follow-up studies 

that might be undertaken, as for example the 

following. 

We utilized a normal approximation to the 

distributions of the Copas statistics in our 

example, noting that in this particular study, 

with a large sample size of well over 6000, 

the normal approximation should be 

adequate. In small samples (n=10 to 80), we 

found a simple Cornish-Fisher 

approximation to tail quantiles to be 

preferable to the normal approximation. 

Further investigation of the adequacy of 

approximations at intermediate sample sizes 

is clearly warranted. Are other 

approximations (e.g., Copas, saddlepoint) 

also worthwhile, especially with Tn? Is there 

anomalous behavior with ’s  near 0 or 1, 

compared to our uniform spacing of the ’s? 

How are power properties related to 

alternatives of interest? A simulation study, 

perhaps patterned after HHLL5, might 

examine power properties for various likely 

alternatives and provide guidance for 

definitive use in model calibration. 
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