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Background: Over the past years, there has been a great deal of interest in applying statistical machine 

learning methods to survival analysis. Ensemble-based methods, especially random survival forest, have 

been developed in various fields, especially medical sciences, due to their high accuracy and non-

parametric nature and applicability in high-dimensional data sets. This paper aims to provide a 

methodological review and how to use random survival forests in the analysis of right-censored survival 

data.  

Method: We present a review article based on the latest research in the PubMed database on random 

survival forest model methodology. 

Results: This article begins with an introduction to tree-based methods, ensemble algorithms, and 

random forest (RF) method, followed by random survival forest framework, bootstrapped data and out-

of-bag (OOB) ensemble estimators, review of performance evaluation indicators, how to select 

important variables, and other advanced topics of random survival forests for time-to-event data. 

Conclusion: When analyzing right-censored survival data with high-dimensional data, while the 

relationships between variables are complex and their interactions are taken into account, the 

nonparametric random survival forest (RSF) method determines important variables affecting survival 

times with high accuracy and speed and also does not need to test the restrictive assumptions. 

Introduction  

Although Cox models (1) are very famous for 

survival data analysis, but these models have 

restrictive assumptions. Also, these models 

become inadequate in high dimensional 

settings and model assumptions are often 

violated (1, 2). Moreover, identifying high-

order interactions requires the presence of 

these effects in the model, which in cox 
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models makes it more difficult to interpret the 

results (3). To alleviate these problems, 

nonparametric and flexible methods such as 

tree ensembles have been developed (4-7).  

In this paper we describe random survival 

forests, a well-known ensemble tree method 

for right-censored time-to-event data 

analysis. Findings of application of this 

method show that making ensembles by the 

average base learners, like trees, can 
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significantly improve the performance of 

prediction. In addition, ensemble learning 

can be improved further by adding 

randomization to the basic learning process. 

The Random Forest Survival (RSF) method 

is a generalized Breiman’s Random Forest 

(RF) method for the analysis of survival data. 

In RF, randomization is done in two ways. 

First, for the growth of each tree, a random 

sampling with replacement (bootstrap 

method) is taken from the data set. Second, in 

each tree node, a number of explanatory 

variables are randomly selected. 

The purpose of this two-stage randomization 

is to make trees independent of each other, 

which due to the bagging property, reduces 

the variance for the ensemble (8). The use of 

deep trees (to reduce bias), when combined 

with reduced variance due to bagging 

(randomization and averaging), enables the 

random forest method to fit valuable models 

with low generalizability error. Therefore, 

the implementation of RSF is similar to the 

RF method and follows its general principles, 

the steps of which are: (i) Survival trees grow 

using bootstrapped data, (ii) When splitting 

tree nodes, several explanatory variables are 

randomly selected from the set of variables, 

(iii) Trees usually grow deep until the 

cessation condition is met, and (iii) the 

survival forest ensemble is calculated by the 

average predicted survival measures of the 

trees. 

After fitting a model, it is very important to 

check the performance of the model. In the 

case of RSF survival analysis, C-index and 

the Brier statistics are usually calculated and 

presented. C-index is an extension of the area 

under ROC curve (9). The large values of the 

C index indicate the suitability of the model 

in fitting the data. 

Tree-Based Methods and Ensemble 

algorithms  

Recently, Machine Learning (ML) 

techniques have been rapidly applied in 

various fields to automatically analyze large 

volumes of data. The main concept of ML is 

to learn the algorithm from repeated input 

data, and to recognize hidden patterns and 

relationships from huge, noisy and complex 

data. An important feature of the ML 

approach is the construction of a prediction 

model with the presence of nonlinear effects 

and complex interactions, among several 

variables. Therefore, ML is widely used in 

medicine to identify important risk factors 

and predict diseases. In addition, ML 

techniques have been adapted to statistical 

learning concepts and principles (10).  

Tree-Based methods are from ML 

techniques. A tree is composed of numerous 

nodes. Tree estimation is in general based on 

recursively performing binary dividing on the 

variable space using some pre-defined 

splitting rule. The result is a collection of 

candidate’s nodes, which continues from the 

top of the tree (root) to a number of terminal 

nodes (leafs) (11).   

In tree-based estimation procedures, each 

tree is non-deterministic as the tree is grown 

on a subspace of individuals who were picked 

from bootstrapping the whole dataset (8). 

Growing a single tree is well known to 

exhibit high variances in predicted outcomes. 

By combining the trees, however, variance as 

well as bias in prediction can be substantially 

decreased (12). 



Rezaei M et al.                                                                                                                                                           Vol 6 No 1 (2020) 

Review of Random Survival Forest Method 

 

64 

www.jbe.tums.ac.ir 

Ensemble methods are based on collective 

votes or results average, that's mean in the 

classification mode, a new classifier by 

majority votes of classifiers, and in the 

predictive mode, it is based on the average of 

results (13). Ensemble algorithms in each tree 

use a random set of explanatory variables in 

each node to make the trees independent of 

each other and then aggregate the results. 

This is because averaging the results of 

several trees can improve the prediction for 

data outside the training samples 

(experimental sets) by reducing overfitting. 

The most important ensemble techniques are 

Bagging, Boosting and RF. In Bagging, trees 

grow with bootstrap samples are based on a 

large number of trees, each of which is a 

random sample with replacement and the 

same size of the original data set (8). 

Boosting trees are based on the idea of 

improving the fit, the algorithm is a linear 

combination of trees. In each step, the data 

that was not well fitted in the previous steps 

are re-fitted in the next steps. In this method 

we get strong from weak predictive trees. 

 

Random Forest  

Random forest is one of the most popular 

supervised ML methods and is one of the best 

classification and prediction algorithms ever 

designed (14). Random forests are known in 

the ML literature for their reliable 

performance that does not require excessive 

model tuning (15).  

Random forests are an example of “model 

averaging”. The prediction obtained with 

random forests is constructed by averaging 

over hundreds or thousands of distinct trees 

that differ from one another for several 

reasons. The name of the algorithm derives, 

in fact, from the characteristic of a random 

forest of being a multitude of trees that differ 

because of random selection of both the data 

and the variables. Random forests combine 

bagging with random selection of variables, 

an idea introduced first by (16).  

Random forests overcome several problems 

with single decision trees. They reduce 

problems of overfitting by averaging several 

trees, also can handle automatically (i.e., 

without need or recoding, grouping, etc.) 

types of scales for explanatory variables and 

also missing data. They can capture non-

linear effects and interaction terms. Another 

important feature of random forests is their 

ability to cope with a large number of 

explanatory variables, even if most of them 

are interrelated. In other words, collinearity is 

not a problem for random forests. 

A disadvantage of random forests (like all 

ensemble methods) is that by averaging 

multiple trees, they do not provide a single 

tree for interpretation. However, several 

measures can be calculated to ease 

interpretation. For example, it is possible that 

each time a particular variable is used in a 

tree, a decrease in the fit indicators (eg Gini 

index) is calculated, and finally by averaging 

these values, the importance of variable in the 

prediction is obtained. 

Random forests were initially used for cross-

sectional data. However, recent 

methodological advances have also made it 

possible to use these methods for survival 

analysis (17-20). 

Random Survival Forest 

RSF is one of the ML methods that uses a set 

of decision trees and provides the most 
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effective explanatory variables related to 

survival time. In two stages of 

randomization, including random sampling 

with replacement (bootstrap) and random 

splitting of nodes, ensemble of decision trees 

in the RSF method is calculated (20). 

 

 

Several independent bootstrap samples 

(usually at least 500 samples) are randomly 

taken from the dataset, and each bootstrap 

sample is used to calculate a separate 

decision tree (Figure 1). By using Bootstrap 

data, the problem of overfitting with other 

data is reduced (14). The next randomization 

stage is performed at the node splitting level. 

In each node of the decision tree, a certain 

(predetermined) number of variables are 

considered. To divide each node, from the 

considered variables, the variable that causes 

the most differences between the daughter 

nodes is selected. 

In general, these two random processes create 

a balance between bias and variance and 

improve predictive performance relative to a 

single decision tree. 

The ensemble is a cumulative hazard 

function (CHF) is based on averaging 

individual tree’s Nelson-Aalen’s CHF (21). 

 

 
 

Figure 1: Illustration of the RSF method. Reference: (22) 

 

The use of the RSF method is very usual and 

logical, because it is a completely data-driven 

method, has no restrictive assumption, and 

can work automatically with high-

dimensional data and their interactions (20). 

For these reasons, in several studies, the 

application of RSF method in identifying 

disease risk factors has been successful (23-

25).  

Each Bootstrap sample contains an average 

of two-thirds of the data set. The remaining 

one third of the data is called out-of-bag data 



Rezaei M et al.                                                                                                                                                           Vol 6 No 1 (2020) 

Review of Random Survival Forest Method 

 

66 

www.jbe.tums.ac.ir 

(OOB). A single decision tree is created 

based on each bootstrap sample. To grow a 

decision tree, in each node a random set of 

explanatory variables are selected to split the 

random node. The number of variables 

selected is usually the square root of the total 

number of variables. The rule of splitting 

(Log-Rank statistics ...) is to maximize the 

difference in survival between nodes. The 

number of random split points for each 

selected variable can be predefined before 

calculating a RSF model when using the 

RandomForestSRC package in R statistical 

software. 

Compared to regression methods, the RSF 

method has several advantages. RSF is 

completely data-driven and therefore 

independent of hypothesis testing (20). This 

method does not test the goodness of fit 

hypothesis, but runs a model that best 

describes the data. To use the RSF approach, 

no hypotheses such as examining the 

distribution of explanatory variables or 

proportional hazards need to be tested. Raw 

data can be used directly to run RSF models. 

The RSF process is largely automated and 

only a few key parameters such as the number 

of bootstrap samples or the number of node 

divisions need to be specified (20). 

Therefore, the RSF approach is also a 

suitable method for exploratory analysis of 

survival data in which prior knowledge is not 

yet complete. 

For tree growth, RSF uses a random subset of 

variables at each node. As a result, to divide 

the nodes, the correlated variables are usually 

selected independently of each other, which 

leads to breaking the correlation structure of 

the variables. Therefore, there is less 

competition between highly correlated 

variables to participate in the model. 

Therefore, the selection of effective variables 

is possible even in the presence of 

multicollinearity (26). In addition, the 

overfitting problem is greatly reduced due to 

randomization through bootstrap sampling 

(27). 

To evaluate the performance of the algorithm 

in predicting, calculate the "out of bag" error 

rate (OOB) and the concordance index (C-

index) are calculated. The RSF does not 

require an independent data set for validation, 

because it is estimated during the 

implementation of the algorithm. 

A disadvantage of the RSF method is that the 

relative risk and odds ratio cannot be 

calculated. Instead, the importance of each 

risk factor can be calculated through 

minimum depth and VIMP indicators. 

However, the variables selected by RSF can 

be analyzed in Cox regression models to 

estimate relative risks and odds ratios. 

Another disadvantage of tree-based methods 

is that in node splitting, they prefer to choose 

continuous variables (28), if the data set 

consists of a combination of continuous and 

qualitative variables, this can be done by 

selecting a little cut points numbers. 

Random survival forests algorithm  

The steps of the RSF algorithm are: 

1- B bootstrap samples is extracted from data 

set. Each sample contains an average of two-

third of the data, and removes the rest of the 

data (OOB sample). 

2- For each bootstrap sample, a survival tree 

is grown. At each tree node, the p variable is 

randomly selected. Each node is split using 

one of the variables that maximizes the 
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survival difference between the daughter 

nodes. 

3- Each tree grows under the constraint that a 

terminal node should have no less than d> 0 

unique outcomes (events). 

4- CHF is calculated for each tree and their 

average is used to obtain ensemble CHF. 

5- Using OOB data, the CHF prediction error 

is calculated. 

6- Estimates based on out-of-bag data (OOB) 

are used to calculate variable importance 

(VIMP). 

Terminal node prediction 

Finally, each survival tree reaches a final 

point due to the limit set for the number of 

outcomes in the terminal nodes, where no 

new daughter nodes are formed. The terminal 

nodes are denoted by £. Suppose a vector 

(T1,h, δ1,h), . . . , (Tn(h),h, δn(h),h) indicates the 

survival times and δ (0=Censoring or 

1=Occurrence of event) for persons in a 

terminal node h ∈ £. A person i is right-

censored at time Ti,h if δi,h = 0 ; if not, δi,h = 1, 

when the person have experienced outcome 

at Ti,h. Let t1, h < t2, h < …< tn(h), h be the n(h) 

distinct outcome times. dl, h and Yl, h are the 

number of deaths and persons at risk at time 

tl, h. The CHF estimate for h is the Nelson–

Aalen estimator: 

𝐻ℎ̂ (t) = ∑
dl,h

Yl,h
tl,h≤ t  

All persons within h have the same CHF. 

Each person i has a d-dimensional covariate 

xi. Let H(t|xi) be the CHF for i. To compute 

this value, drop xi down the tree. Due to the 

structure of the survival tree, xi will fall into 

a unique terminal node h∈ £. The CHF for i 

is the Nelson–Aalen estimator for xi’s 

terminal node:

 

                                   H(t|xi) =𝐻ℎ̂ (t)           , if xi ∈h.         (1)    

Phrase (1) defines the CHF for all 

persons. 

The bootstrap and OOB ensemble CHF 

To calculate the ensemble CHF, the CHF 

values of the trees (B trees) are averaged. 

Here the CHF estimate in the out-of-bag 

(OOB) and bootstrap samples are computed. 

Recall that each tree in the forest is randomly 

generated by a bootstrap sample independent 

of the other trees. 

Ii, b =1 if i-th is an OOB case for b-th tree; if 

not, Ii,b = 0. Hb
∗ (t|x) indicate the CHF (1) for 

a tree grown from the b-th bootstrap sample. 

The OOB ensemble CHF for i is 

𝐻𝑒
∗∗ (t|xi) = 

∑ 𝐼𝑖,𝑏𝐻𝑏
∗

(𝑡|𝑥𝑖)
𝐵
𝑏=1

∑ 𝐼𝑖,𝑏
𝐵
𝑏=1

            (2) 

 

See that (2) is an average over bootstrap 

data in which i is OOB. 

Similarly, 𝐻𝑒
∗∗(t|xi) can be computed as 

follows. Drop OOB samples down a 

survival tree grown from in-bag 

(bootstrap) data. Find i’s terminal node 

and it’s CHF. Compute the average of 

these CHFs. This gives (2). 

Now, the bootstrap ensemble CHF for i is: 
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𝐻𝑒
∗ (t|xi) = 

1

𝐵
 ∑ 𝐻𝑏

∗  (t|xi)𝐵
𝑏=1                            (3) 

 

See that (3) employs all survival trees.  

C-index calculation 

When an RSF model is fitted, model 

performance evaluation indicators such as C-

index are required. How to calculate index C 

according to the following steps: 

1. All possible pairs of cases are obtained. 

2. Remove those pairs whose lower survival 

time is censored. Remove pairs i and j if Ti = 

Tj  unless at least one is a death (Occurrence 

of event). Permissible is the total number of 

permissible pairs. 

3. For each permissible pair where Ti ≠ Tj 

,count 1 if the lower survival time has worse 

predicted measure; count 0.5 if predicted 

measures are tied. For each permissible pair, 

where Ti = Tj and both are deaths, count 1 if 

predicted measures are tied; if not, count 0.5. 

For each permissible pair where Ti = Tj ,but 

not both are deaths, count 1 if the death has 

worse predicted measure; if not, count 0.5. 

Concordance is sum over all permissible 

pairs. 

4. C-index = Concordance/Permissible. 

Prediction error rate 

To specify the prediction accuracy of a RSF 

model, the prediction error rate of this model 

can be calculated based on the C-index. The 

prediction error rate is equivalent to the 1-C-

index, whose values are between 0 and 1. The 

lower prediction error rate is equivalent to 

RSF models with higher prediction accuracy 

(20, 29). 

Variable selection and VIMP 

Variable selection is used for complex, high-

dimensional data to identify variables related 

to the outcome under study. In general, the 

variable selection process is associated with 

a reduction in the size of the data set, which 

is desirable and practical for the following 

reasons (30-32). 

1) Excessive predictive variables cause 

problems in statistical analysis that lead to 

bias, misleading estimates and reduced 

prediction accuracy. 

2) Overfitting, multiple test problems and 

multicollinearity can be reduced with simple 

models. 

3) Statistical interpretation is improved by 

reducing the number of variables. 

4) In the field of clinical diagnoses and 

disease prediction, using several important 

variables to prevent misinterpretation and 

also reduce costs. 

Important variables are selected based on 

their importance index (VIMP). To calculate 

the VIMP for a variable x, drop the OOB data 

down on their survival tree. While there is a 

split for x, assign the daughter node 

randomly. The CHF is calculated and 

averaged from each such tree. VIMP for x is 

the prediction error for the main ensemble 

that is subtracted from the prediction error for 

the new ensemble (14,33). 

High values of VIMP indicate variables with 

high predictive power, while values of zero 

or negative indicate unpredictable variables. 

Extensions of Random Survival Forests 

A new generalization of RSF for use in 

competing risks is explored by (34). Two 

news dividing rules for growing competing 

risk trees, namely log-rank splitting and the 
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modified Gray’s splitting, were defined to 

examine the equality of the cause-specific 

hazard and the equality of the cumulative 

incidence function (CIF), respectively. They 

also introduced several new ensemble 

estimators for competing risks such as 

ensemble CIF and event-specific estimates of 

mortality.  

Cox boosting  

Boosting is one of the ensemble methods that 

reaches a strong learner based on the 

combination of several weak learners and is 

one of the best methods, especially in 

classification issues (35). Therefore, due to 

its useful and accurate applications and 

performance, this method has been expanded 

in the field of statistics, including regression 

methods and survival analysis (36). Unlike 

the bagging method, this method does not use 

independent learners and its learning process 

is sequentially. 

The main task of boosting is to improve the 

predictors sequentially, which in each 

iteration includes the weak predictors of the 

previous stage, and seeks to minimize the 

predefined loss function. 

In survival analysis, most boosting methods 

are based on the Cox model, by using 

gradient boosting, with a loss function gained 

from the Cox partial likelihood function, as 

used in the R-packages mboost and 

CoxBoost (37). Mboost is based on model-

based boosting, whereas CoxBoost is a 

likelihood-based boosting. 

Discussion 

Due to its high flexibility, ability to variable 

selection, and its nonlinear and 

nonparametric nature, the random survival 

forests method has become an active research 

topic and a promising approach for high-

dimensional survival data in many bio-

medical applications. This paper provides a 

partial survey of methodological 

developments of random survival forests in 

the past years.  

In this article we have explained RSF, a new 

generalization of RF method (14), to right-

censored survival data. A RSF includes of 

random survival trees. Using separately 

bootstrapped data, each tree is grown by 

random subset of variables at each node. 

Therefore, correlated variables will be 

chosen apart from each other, then splitting 

the node using a splitting rule such as Log-

Rank. The tree is grown until each terminal 

node has no less than d > 0 unique 

experienced outcomes (deaths). The 

estimated CHF for a person is the Nelson–

Aalen estimator for the person’s terminal 

node. The ensemble is the average of these 

CHFs. OOB ensemble can be computed by 

dropping OOB cases down their in-bag 

survival trees and averaging. 

Evidence from applied medical research 

papers shows that the RSF method performs 

better or at least better than its competitors in 

analyzing survival data and makes precise 

ensemble predictors. RSF is very useful for 

discovering very complex relationships 

between variables. While traditional methods 

are based on several restricted assumptions, 

and they are less automatic and do not work 

well in multicollinearity situation. 

RSF is an attractive method when the target 

is to do prediction. Its advantage is more 

apparent when relationship between outcome 

and covariates are complex or when the 

proportional hazard assumption is at risk 
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(11). In addition, due to the process of 

random node dividing, highly correlated 

variables can also be in the model, and the 

selection of valid variables is possible even if 

there is multicollinearity (26). In addition, the 

overfitting problem is greatly reduced due to 

randomization done through the bootstrap 

sampling method (27). As expected, the 

results of the review of numerous articles 

show the applicability and accuracy of the 

ensemble methods as RSF, especially in the 

medical sciences. 
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