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Background: There has been a great interest in joint modeling of longitudinal and survival data in recent two 

decades. Joint models have less restrictive assumptions in multivariate modeling and could address various 

research questions. This has led to their wide applications in practice. However, earlier models had normality 

assumption on the distribution in longitudinal part that is usually violated in real data. Hence, recent research 

have focused on circumventing this issue. Using various skewed distributions has been proposed and applied 

in the literature. Nevertheless, the flexibility of the proposed methods is limited especially when the data are 

skew positive.  
Methods: In this paper, we introduce the use of Birnbaum-Saunders (BS) distribution in joint modeling 

context. BS distribution is more flexible and could cover a wide range of skew, kurtotic or bimodal data. 

Results: We analyzed publicly available ddI/ddC data both with normal and BS distributions in Bayesian 

setting and compared their fit by Widely Applicable Information Criterion (WAIC). The joint BS model 

showed a better fit to the data. 

Conclusion: We introduced and applied BS distribution in joint modeling of longitudinal-survival data. Using 

multi-parameter distributions such as BS in Bayesian setting could improve the fit of models without 

limitations that arise in transformation of data from original scale. 

 

 

Introduction  

The advent of computing facilities has made 

noticeable developments in statistical inference 

in recent decades resulting in easier 

multivariate modeling, less biased and more 

accurate assessments of phenomena. Amongst 

the other methods of the multivariate analysis, 

joint modeling has attracted great attention due 

to its less restrictive assumptions and various 

approaches of modeling, each aiming a 

particular research question (1, 2). The 

literature on joint modeling of survival and 

longitudinal data has been increasingly growing 

and many applications have been reported in 

cancer clinical trials and observational studies 

                                                      
*. Corresponding Author E-mail: tjkoshki@gmail.com 

(3, 4). The interest on joint survival-

longitudinal models is mainly due to limitations 

in modeling time-varying covariates, known as 

response here, and time to an event under 

investigation (5). Time-dependent survival 

models are limited in flexibility and addressing 

advanced questions. 

Joint longitudinal- survival models date back to 

the late 1990s. Models proposed by Faucet et al 

(1996), Wulfsohn et al. (1997) and Henderson 

et al. (2000) were the basis for future 

developments (4, 6, 7). Primary models were 

based on the assumption of normal distribution 

for the error term of longitudinal response. This 

assumption was violated in many applications 
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and, hence, models with greater flexibility were 

required. Song et al. (2002) used a smooth 

density for random effects. Brown and Ibrahim 

(2003) and Rizopoulos  et al. (2011) proposed 

the use of Dirichlet process for prior 

distributions in modeling multivariate 

longitudinal and time-to-event data (8, 9). Yu et 

al. (2008) used a nonlinear mixed models in 

prostate cancer survival data (10). A similar 

method was applied by Song et al. (2012) in 

joint models of skewed longitudinal data and 

cure-rate survival (11). Baghfalaki et al. (2013) 

proposed using normal/independent 

distribution for random effects (12). Tang et al 

(2014) applied a Bayesian semi-parametric 

joint model capable of modeling multivariate 

longitudinal responses with a greater flexibility 

for time (13). Using t, skew-t and scale-mixture 

t distributions was the principal point in some 

studies dealing with non-normal longitudinal 

outcomes in joint models (14-16). Some other 

distributions such as skew-normal and skew-

slash are specific forms of broader family of 

normal/independent distributions appropriate 

for heavy-tailed responses (17). All these 

distributions lie in R. However, in many 

applications, they are also used for non-

negative outcomes. In addition, the use of 

distribution with positive values such as log-

normal is also problematic in data with outliers 

(18). All these models are specific forms of 

scale-mixture normal distribution (19) and 

could be linked to normal distribution via 

equation 

𝑌 = 𝜇 + √𝑔(𝑈)𝑋,                [1.1] 
 

where 𝛸~𝛮(0, 𝜎2) and U is a positive random 

variable, independent of X and g is a positive 

function. Using 𝑔(𝑈) = 1 𝑈⁄  yields 

normal/independent distribution. 

Birnbaum and Saunders (1969) proposed a (BS) 

distribution for fatigue data. The distribution is 

capable of modeling data with various degrees 

of kurtosis and positive skewness defined on 

positive values (20). The density function of BS 

distribution is given by 

 

𝑓𝑌(𝑦; 𝛼, 𝛽) =
1

√2𝜋
exp (−

1

2𝛼2 [
𝑦

𝛽
+

𝛽

𝑦
− 2])

[𝑦 + 𝛽]

2𝛼√𝛽𝑦3
,       𝑦 > 0, 𝛼 > 0, 𝛽 > 0;        [1.2] 

 

Rieck and Nedelman (1991) used Birnbaum-

Saunders (BS) distribution in regression setting 

by applying a log-linear transformation which 

results in sinh-normal (SHN) distribution (21). 

Suppose W follows a SHN distribution. The 

density function for SHN distribution with 

shape, location and scale parameters α, μ and σ 

is given by 

𝑓𝑊(𝑤) =
2

𝛼𝜎√2𝜋
cosh (

𝑤 − 𝜇

𝜎
) 𝑒𝑥𝑝 {−

2

𝛼2
𝑠𝑖𝑛ℎ2 (

𝑤 − 𝜇

𝜎
)} ;  𝑤 ∈ 𝑅, 𝛼 > 0, 𝜇 ∈ 𝑅, 𝜎 > 0.        [1.3] 

If 𝑌~𝐵𝑆(𝛼, 𝛽) then 𝑊 = 𝑙𝑜𝑔(𝑌)~𝑆𝐻𝑁(𝛼, 𝑙𝑜𝑔(𝛽), 2). 

 

The log-transformation technique is widely 

used in regression models for analyzing skew 

data arising in various fields including survival 

analysis, insurance data, air pollution and 

engineering (22-24). Many other distributions 

have been developed based on BS distribution. 

For extensions on BS distribution see (18, 22, 

23, 25-27). 

In this study, we propose using BS distribution 

in Bayesian framework for joint longitudinal-

survival modeling with skew longitudinal data. 

We illustrate the model on a publicly available 

data and compare model fit to commonly used 

normal distribution. 

In section 2, simple longitudinal submodel is 

explained. Joint longitudinal-survival models 

with normal and BS distributions in 

longitudinal part along with details of 

implementation and model selection are 

demonstrated in section 3-5. In sections 6, an 

example on real data is described and the results 

of joint models are compared. A discussion and 

possible areas of future work are included in 

section 7. 
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Longitudinal Model 

Linear mixed models are among popular 

approaches for analysis of longitudinal data. 

We used following mixed model used in 

longitudinal part of joint models by Henderson 

et al (2000) where association between 

longitudinal and survival parts are constructed 

by a mean-zero bivariate normal distribution 

(4). Suppose 𝑦𝑖𝑗 is the longitudinal response for 

i-th subject measured at j-th measurement and 

𝒙𝑖 is the vector of associated covariates with 

coefficient vector 𝜷. For the simplicity of 

notation we illustrate the model for time-

invariant covariates. Then, the longitudinal 

process could be written as

   

𝑦𝑖𝑗 = 𝒙𝑖
′𝜷 + 𝒘𝑖

′𝒃𝑖 + 휀𝑖𝑗 = 𝒙𝑖
′𝜷 + 𝑏0𝑖 + 𝑏1𝑖 × 𝑡𝑖𝑗 + 휀𝑖𝑗          [2.1]

 

where 𝒘𝑖 = [1    𝑡𝑖𝑗]
′
 is the design matrix for 

subject i and 𝒃𝑖 = [𝑏0𝑖    𝑏1𝑖]′ is the associated 

random effects vector. Here, 휀𝑖𝑗 indicates error 

term that is usually assumed to follow normal 

distribution. We will substitute this with 

Birnbaum-Saunders distribution in 

multiplicative model that is usually converted 

to sinh-normal (SHN) distribution in log-

transformed additive model as described in the 

next section. 

Joint Models 

In the remainder of the article, we will use 

𝒙1and 𝒙2 with corresponding coefficient vector 

𝜷1 and 𝜷2 to represent covariates in 

longitudinal and survival submodels, 

respectively, that could have elements in 

common or not. Suppose a set of n subjects are 

followed over a time interval [0, T) and 

repeated measurements {𝑦𝑖𝑗, 𝑗 = 1, … , 𝑛𝑖} were 

recorded, with possibly partly missing, for 

subject i, i=1, …, n at j-th measurement. For 

each subject, observed survival time, 𝑆𝑖, and 

censorship status are also recorded.  

We assumed linear mixed effects model for 

repeatedly measured response, 𝑦𝑖𝑗, as below 

𝑦𝑖𝑗 = 𝜇𝑖𝑗+휀𝑖𝑗 

𝜇𝑖𝑗 = 𝒙1𝑖
′ 𝜷1 + 𝒛𝑖𝑗

′ 𝒃𝑖 = 𝒙1𝑖
′ 𝜷1 + 𝑏0𝑖 + 𝑏1𝑖 × 𝑡𝑖𝑗 .                 [3.1] 

 

Here, 𝒙1𝑖 
is the corresponding covariate vector 

for subject i at j-th measurement with 

coefficient vector𝜷1, 𝑡𝑖𝑗 is the time for subject 

i on j-th measurement, 𝒃𝑖 = [𝑏0𝑖    𝑏1𝑖]′ is the 

associated random effects vector and 휀𝑖𝑗 is the 

error term. 

Survival time is modeled using Weibull 

distribution that is flexible and could cover 

different hazard shapes. 

  

𝑇𝑖~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝜈, 𝜆𝑖), 

ℎ𝑖(𝑡) = 𝜈𝜆𝑖𝑡𝑖
𝜈−1 = 𝜈𝑡𝑖

𝜈−1𝑒𝑥𝑝(𝒙2𝑖
′ 𝜷2),              [3,2] 

 

𝑇𝑖 and ℎ𝑖(. ) are the time to event and hazard 

function for the i-th subject, and 𝜈 > 0 is the 

shape parameter. In the survival submodel, 

covariate vector for the i-th subject at time t, 

𝒙2𝑖, is introduced to the model via the subject 

specific rate parameter 𝜆𝑖 = 𝑒𝑥𝑝(𝒙2𝑖𝑡
′ 𝜷2) with 

corresponding coefficient vector 𝜷2. The 

covariates could be time invariant or time 

dependent. We also used Exponential 

distribution (i.e., 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(1, 𝜆𝑖)) for error term 

to compare proposed model in simpler settings. 

Following Henderson et al. (2000), the 

association between longitudinal and survival 

process is introduced by using shared random 

effects (4). For joint model with normally 

distributed longitudinal process, we have 
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𝑦𝑖𝑗 = 𝑁(𝜂𝑖𝑗 , 𝜎𝜀
2),            [3.3] 

or equivalently휀휀 

𝑦𝑖𝑗 = 𝜂𝑖𝑗 + 휀𝑖𝑗 , 

휀𝑖𝑗~𝛮(0, 𝜎𝜀
2), 

 

𝜂𝑖𝑗 = 𝒙1𝑖
′ 𝜷1 + 𝒛𝑖

′𝒃𝑖 = 𝒙1𝑖
′ 𝜷1 + 𝑏0𝑖 + 𝑏1𝑖 × 𝑡.                    [3.4] 

Here, 𝒛𝑖𝑗 = [1     𝑡𝑖𝑗]
′
 is the subject specific 

covariate random effects with 𝒃𝒊 = [𝑏0𝑖   𝑏1𝑖]′ 

as coefficients for the subject i. The two 

submodels are joined using shared-parameter 

below.  

 

 

𝑇𝑖~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝜈, 𝜆𝑖), 
𝜆𝑖(𝑡) = 𝑒𝑥𝑝(𝒙2𝑖

′ 𝜷2 + 𝜸𝑖
′𝒃𝑖) = 𝑒𝑥𝑝(𝒙2𝑖

′ 𝜷2 + 𝛾0 × 𝑏0𝑖 + 𝛾1 × 𝑏1𝑖).                [3.5]     

 

The vector 𝜸 = [𝛾0   𝛾1]′

 
is the joining 

parameter where the first element reflects the 

effect of the initial values of the longitudinal 

response on the hazard and the second, 

describes the effect of longitudinal trends of the 

response on the hazard.  

Similarly, for the joint model with BS 

distribution, longitudinal process could be 

written as 

 

𝑦𝑖𝑗~𝐵𝑆(𝛼, 𝛿𝑖𝑗), 

or 

 

𝑦𝑖𝑗 = 𝛿𝑖𝑗
∗ 휀𝑖𝑗

∗ ,  

휀𝑖𝑗
∗ ~𝐵𝑆(𝛼, 1),  

𝛿𝑖𝑗
∗ = 𝑒𝑥𝑝(𝒙1𝑖

′ 𝜷1 + 𝒛𝑖
′𝒃𝑖) = 𝑒𝑥𝑝(𝒙1𝑖

′ 𝜷1 + 𝑏0𝑖 + 𝑏1𝑖 × 𝑡𝑖𝑗).              [3.6] 

 

As for normal joint model, joining for BS 

model is through sharing vector 𝜸 = [𝛾0   𝛾1]′, 

 

 

 

𝑇𝑖~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝜈, 𝜆𝑖), 

𝜆𝑖 = 𝑒𝑥𝑝(𝒙2𝑖
′ 𝜷2 + 𝜸𝑖

′𝒃𝑖) = 𝑒𝑥𝑝(𝒙2𝑖
′ 𝜷2 + 𝛾0 × 𝑏0𝑖 + 𝛾1 × 𝑏1𝑖).                [3.7]     

 

To fit longitudinal BS model as in [3.4], using 

log transformation in [3.6] gives additive model 

below 

𝑙𝑜𝑔(𝑦𝑖𝑗)~𝑆𝐻𝑁(𝛼, 𝛿𝑖𝑗 , 2), 

or equivalently 

 

𝑙𝑜𝑔(𝑦𝑖𝑗) = 𝛿𝑖𝑗 + 휀𝑖𝑗
∗∗,  
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𝛿𝑖𝑗 = 𝒙1𝑖
′ 𝜷1 + 𝒛𝑖

′𝒃𝑖 = 𝒙1𝑖
′ 𝜷1 + 𝑏0𝑖 + 𝑏1𝑖 × 𝑡𝑖𝑗  

휀𝑖𝑗
∗∗~𝑆𝐻𝑁(𝛼, 0,2).                                    [3.8] 

 

 

In both normal and BS (i.e., log-BS) joint 

models, random effects are modeled as 

𝒃𝑖 = [𝑏0𝑖    𝑏1𝑖]′~𝑖𝑖𝑑  𝑁2(𝟎, 𝜮). 
 

4. Likelihood and Priors 

In this section, subscripts N and BS represent 

elements for Normal and BS models, 

respectively. Suppose D is the observations and 

θ represents vector of parameters. Then 

likelihood for normal model could be written as 

 

𝐿(𝜽𝑁|𝑫) ∝ {∏ 𝜙(𝑦𝑖𝑡; 𝒙1𝑖
′ 𝜷1,𝛮 + 𝒘𝑖

′𝒃𝑖, 𝜎𝜀
2) × 𝜋(𝜷1,𝑁) × 𝜋(𝒃𝑖) × 𝜋(𝜎𝜀

2)

𝑛

𝑖=1

} 

× {[𝑆𝑁(𝑠𝑖)]1−𝜛𝑖 × [ℎ𝑁({𝑠𝑖|ν, λ𝑖,𝑁})]
𝜛𝑖 × 𝜋(𝜷2,𝛮) × 𝜋(𝜈) × 𝜋(𝜸𝑁)},                [4.1] 

 

where 𝜛 indicates censorship; 1= censored; 0= 

event. The density and priors could be 

represented in hierarchical form as 

 

𝑦𝑖𝑡|𝒙1𝑖
′ , 𝜷1,𝛮, 𝒃𝑖, 𝜎𝜀

2~𝛮(𝒙1𝑖
′  𝜷1,𝛮 + 𝒘𝑖

′𝒃𝑖, 𝜎𝜀
2); 

𝒃𝑖|𝜮0~𝛮2(𝟎, 𝜮0), 

𝜷1,𝛮|𝜮1,𝛮~𝛮𝑝(𝟎, 𝜮1,𝑁), 

𝜎𝜀
2~𝑔𝑎𝑚𝑚𝑎(1,1).                [4.2] 

 

for normal longitudinal part that is linked to 

survival part with Weibull distribution as  

ℎ𝑖,𝑁(𝑠|𝜈, 𝜆𝑖𝑠,𝛮) = 𝜈𝑠𝜈−1𝜆𝑖,𝑁 , 

𝜆𝑖,𝑁 = 𝑒𝑥𝑝(𝒙2𝑖
′  𝜷2,𝛮 + 𝜸𝛮𝒃𝑖), 

𝜷2,𝛮|𝜮2,𝛮~𝛮𝑝(𝟎, 𝜮2,𝑁), 

𝜸𝛮|𝜮𝜸,𝑁~𝛮2(𝟎, 𝜮𝜸,𝑁).         [4.3] 

 

That contains sharing parameters vector 𝜸 =
[𝛾0    𝛾1]′ that we assumed to follow bivariate 

normal distribution with diagonal covariance 

matrix 𝜮𝜸,𝑁. 
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Similarly, for BS distribution (transformed to 

SHN distribution) we could construct the 

likelihood as below 

𝐿(𝜽𝐵𝑆|𝑫) ∝ {∏ 𝑓𝑆𝐻𝑁(𝑦𝑖𝑡; 𝛼, 𝒙1𝑖
′ 𝜷1,𝐵𝑆 + 𝒘𝑖

′𝒃𝑖, 2) × 𝜋(𝜷2,𝐵𝑆) × 𝜋(𝒃𝑖) × 𝜋(𝛼)

𝑛

𝑖=1

}

× {[𝑆𝐵𝑆(𝑠𝑖)]1−𝜛𝑖 × [ℎ𝐵𝑆({𝑠𝑖|ν, λ𝑖,𝐵𝑆})]
𝜛𝑖 × 𝜋(𝜷2,𝐵𝑆) × 𝜋(𝜈) × 𝜋(𝜸𝐵𝑆)},         [4.4] 

 

with hierarchical density and priors as 

𝑦𝑖𝑗|𝒙1𝑖𝑡
′ , 𝜷1,𝐵𝑆, 𝒃𝑖~𝑆𝐻𝛮(𝛼, 𝒙1𝑖

′  𝜷1,𝐵𝑆 + 𝒘𝑖
′𝒃𝑖, 2); 

𝒃𝑖|𝛴0~𝛮2(𝟎, 𝜮0), 

𝜷1,𝐵𝑆|𝜮1,𝐵𝑆~𝛮𝑝(𝟎, 𝜮1,𝐵𝑆), 

𝛼~𝑔𝑎𝑚𝑚𝑎(1,1),                [4.5] 

 

where α > 0 is the shape parameter that was 

assumed to follow gamma distribution. This 

longitudinal part is linked to survival part in a 

similar way to normal model with density and 

priors as 

 

 

ℎ𝑖,𝐵𝑆(𝑠|𝜈, 𝜆𝑖𝑠,𝐵𝑆) = 𝜈𝑠𝜈−1𝜆𝑖,𝐵𝑆, 

𝜆𝑖𝑠,𝐵𝑆 = 𝑒𝑥𝑝(𝒙2𝑖𝑠
′  𝜷2,𝐵𝑆 + 𝜸𝐵𝑆𝒃𝑖), 

𝜷2,𝐵𝑆|𝜮2,𝐵𝑆~𝛮𝑝(𝟎, 𝜮2,𝐵𝑆), 

𝜸𝐵𝑆|𝜮𝜸,𝐵𝑆~𝛮2(𝟎, 𝜮𝜸,𝐵𝑆).         [4.6] 

 

Implementation and model selection  

The models were fitted by using Hamiltonian 

Monte Carlo (HMC) method in Stan software 

(mc-stan.org) that avoids issues that arise in 

Gibbs sampling (28). Stan is a better choice in 

fitting complex models with complicated 

posteriors that usually involve high correlation 

among parameters. Stan is capable of handling 

non-conjugate priors used to obtain closed 

forms of posteriors and, actually, there is no 

value in using such priors. Using gamma priors 

for the variance component, instead of 

commonly used inverse-gamma distribution, is 

a result of such flexibility. Implementation of 

complex models in Stan is much easier as 

computational issues may arise in software such 

as BUGS (29).  

Deviance information criteria (DIC), proposed 

by Spiegelhalter et al. (2002), is the widely used 

tool for model comparison in Bayesian setting. 

It can be easily calculated in BUGS software 

and this is the main reason for its popularity. 

However, it is not a fully Bayesian criterion and 

is inefficient in many situations (30-32). For 

these reasons, we used two other criteria for 

model selection. The first one is Conditional 

Predictive Ordinates (CPO) originally proposed 

by Geisser (1980) and developed into Bayesian 

settings by Gelfand et al. (1992) (33, 34). The 
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CPO is calculated based on predictability of 

each observation from others as follows 

𝐶𝑃𝑂𝑖 = 𝑓(𝑦𝑖|𝑫(−𝑖)) = ∫ 𝑓(𝑦𝑖|𝜷, 𝒙𝑖) (𝜷|𝑫(−𝑖))𝑑𝜷 

The sum of log(CPO) over all observations 

gives log-pseudo maximum likelihood (LPML) 

criterion. The larger the calculated LPML, the 

better the model fit is. LPML is robust against 

improper priors and is computationally stable 

(35). 

The second criterion we used for model 

comparison is the Widely Applicable 

Information Criterion (WAIC) proposed by 

Watanabe (2010) (36). Despite DIC that uses 

conditioning on a single point from posterior 

distribution (i.e., the mean), calculations in 

WAIC are based on the whole samples 

generated from posterior distribution. WAIC 

has more Bayesian-theoretical background than 

any other criterion and is probably the best 

goodness-of-fit criterion in Bayesian models 

(30, 37). Smaller values of WAIC indicate 

better fit. 

 

Analysis of ddI/ddC Data 

To illustrate our model, we used ddI/ddC data 

from a trial that has been previously analyzed 

using joint models assuming normal 

distribution for longitudinal response (29, 38). 

The trial aimed to compare the efficacy and 

safety of two antiretroviral drugs in the 

treatment of patients who had failed or were 

intolerant of zidovudine (AZT) therapy. In 

brief, 467 HIV-infected patients eligible 

according to pre-specified criteria were 

randomized into two groups to receive either 

didanosine (ddI) or zalcitabine (ddC). The 

longitudinal outcome, CD4 counts, was 

measured at study entry the four next visits with 

2 months interval. Guo and Carlin (2004) used 

a square root transformation on CD4 counts to 

apply joint model with normal error term (29). 

Here, we sue same transformation to provide a 

comparative basis. Assessing the boxplot of 

CD4 counts for all observations and in two 

groups over time (Figure 1) suggests fairly 

positive skewness in all visit times. As it is 

evident, transformation is not successful in 

normalizing data and using distributions 

capable of handling skew data could provide 

better fit.  

 

 

 

 

Here we consider the square root of the j-th 

CD4 count measurement on the i-th patient as 

the longitudinal outcome, 𝑦𝑖𝑗 , 𝑗 = 1, … , 𝑛𝑖, and 

i = 1, . . . , n. Main effects of four following 

binary explanatory variables were included in 

the model: Drug (1= ddI, 0= ddC), Gender (1= 

 
Figure 1. Square root of CD4 cell count for all aptients over all visit times (the left) and ddC group 

(the middle) and ddI group (the right) in each visit. 
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male, −1= female), PrevOI (1= AIDS diagnosis 

at study entry, -1= no AIDS diagnosis), and 

Stratum (1= AZT failure, −1= AZT 

intolerance). The aim of study is to analyze the 

association between CD4 cell count and 

survival time with the four variables as 

covariates by allowing for subject-specific 

random effects. 

 

 
 

We used Weibull and Exponential distributions 

in survival part. The results of joint models 

using normal and Birnbaum-Saunders (SHN in 

transformed model) distributions are shown in 

Table 1. The estimated shape parameter for 

Weibull distribution is 1.4 in both normal and 

BS models. Hence the results of Weibull model 

is essentially same as Exponential model. The 

estimates in survival part are very similar as 

well. However, differences in estimated 

coefficients in longitudinal part are larger, 

albeit with similar significance. Using BS 

distribution did not alter the significance of 

covariates in this example. However, fit of 

models are different. Comparing WAIC and 

LPML criteria indicates better fit for Weibull 

distribution, as expected. Both criteria suggest 

better fit for joint model with BS distribution. 

 

Discussion and future work 

There have been remarkable research on joint 

modeling of longitudinal and time-to-event data 

in last two decades. Various approaches have 

been proposed and their strength and limitations 

have been discussed in the literature. All these 

have assumptions on the distribution and the 

way two processes are linked. The longitudinal 

part has attracted more attention in recent years 

and a wide range of distributions have been 

applied instead of traditionally used normal 

distribution. We proposed using Birnbaum-

Saunders (BS) distribution for skew-positive 

data. In real dataset, BS outperformed normal 

distribution. The proposed model could also be 

modified to contain BS distribution in both 

submodels. There are various developments on 

BS distribution such as extended-BS and 

generalized-BS. These could have better fit in 

certain data. If the distribution is bimodal, using 

BS distribution with shape parameter of >2 

would be a nice choice. If the non-normality is 

due to the kurtosis, BS distribution could be 

among the distributions with improved fit. Our 

aim was to introduce BS distribution in joint 

modeling of univariate skew data. However, it 

could be extended to joint modeling of 

multivariate and cure-rate survival data. Non-

normality is common in many applications and 

inferences should be adjusted accordingly. BS 

distribution could be a preferable candidate in 

dealing with various violations from normality 
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