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Background: A study on the dengue daily counting in São Paulo city in a fixed period of time is assumed considering 

a new regression model approch. 

Methods: Under a Bayesian approach, it is introduced a polynomial linear regression model in presence of some 

covariates which could affect the counts of dengue in São Paulo city considered in the logarithm scale, combined with 

existing stochastic volatility models usually assumed in financial data analysis. Markov Chain Monte Carlo (MCMC) 

methods are used to get the posterior summaries of interest. 

Results: The new model approach showed some advantages when compared to other existing times series models 

usually used to model epidemics data. 

Conclusion: The use of the polynomial regression model combined with existing volatility models under a Bayesian 

approach showed that it is possible to get very accurate fit for the counting dengue data in São Paulo city where it is 

possible to jointly model the means and volatilities (variances) of the epidemiological dengue time series. 

 

 

Introduction 

Dengue is a viral disease transmitted by 

mosquitoes that spreads most quickly in the world. 

In the last 50 years, the incidence has increased 30 

times with the increase in geographical expansion 

to new countries. It is estimated that 50 million 

dengue infections occur annually (Figure 1) and 

approximately 2.5 billion people live in dengue-

endemic countries1. About 1.8 billion (more than 

70%) of the population at risk for dengue 

worldwide lives in countries in Southeast Asia and 

the Western Pacific region. Since 2000, epidemic 

dengue has spread to new areas and has increased 

in the already affected areas of the region. In 2003, 

eight countries - Bangladesh, India, Indonesia, 

Maldives, Myanmar, Sri Lanka, Thailand and 

Timor-Leste - were reported dengue cases1. 

Between 2001 and 2008, 1,020,332 cases were 

reported in Cambodia, Malaysia, the Philippines 

and Vietnam - the four countries in the Western 
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Pacific region with the highest number of cases and 

deaths1. An interruption of dengue transmission in 

much of the Americas was the result of a campaign 

to eradicate the Aedes Aegypti mosquito, mainly in 

the 1960s and early 1970s. However, vector 

surveillance and control measures were not 

sustained and there were subsequent mosquito 

reinfestations, followed by outbreaks in the 

Caribbean, Central and South America1. Since 

then, dengue has spread with cyclical outbreaks 

that occur every 3 to 5 years. The biggest outbreak 

occurred in 2002 with more than 1 million reported 

cases. From 2001 to 2007, more than 30 countries 

in the Americas reported a total of 4,332,731 

dengue cases. In this period of time, 64.6% 

(2,798,601) of all dengue cases in the Americas 

were reported in the sub-region including 

Argentina, Brazil, Chile, Paraguay and Uruguay. 

Although dengue exists in the WHO African 

region, surveillance data is poor. 
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Figure 1. Average annual number of dengue and hemorrhagic dengue cases reported by WHO and countries reporting dengue, 1955-
2007. 

 
Different statistical models have been used in the 

literature to be fitted by dengue times series 

considering the count data in the original or 

transformed scale. In these studies, different 

statistical techniques are used in the analysis of the 

data, especially with data related to the time series 

of notified cases in a region in a given period of 

time, especially in the forecast of new cases. In this 

direction, 2analyzed temporal patterns of dengue 

incidence for the period from 2001 to 2014 with 

forecasts for 2015 in two Brazilian cities: Goiania 

and Recife considering dengue surveillance data 

reported by SINAN (a Brazilian public health 

dataset office) using Moving Average or ARIMA 

(autoregressive integrated moving averag) times 

series models3.Forecasting models (95% forecast 

range) were developed to predict the number of 

dengue cases in 2015 for these two cities. Several 

other authors have used ARIMA or SARIMA 

(seasonal autoregressive integrated moving 

average) models to model dengue incidence time 

series4-7. Other studies consider the use of space-

time models in modeling dengue data8. 

On other hand, for the statistical analysis of the 

dengue count in the original scale, standard 

counting models based on regression Poisson 

models (generalized linear models, see for 

example,9 also could be used, but the use of 

stochastic volatility models in the logarithm scale 

of the counting data gives more flexibility to 

simultaneously model the mean and variance 

(volatility) of the epidemiological time series. The 

use of stochastic volatility models is becoming 

very popular in the analysis of financial time series, 

as it can be verified in some studies as the paper 

published by10 that carry out related empirical 

applications of financial risk incorporating 

stochastic volatility probability models in presence  

of random measures under a Bayesian approach. In 

other study, 11proposed a spatial stock  model in 

which latent log volatility measures  follow an 

autoregressive process to estimate the return on 

residential property prices in the Chicago 

metropolitan area and 12presented a  Bayesian 

approach on the earning shocks and its volatility in 

financial crises and its subsequent recovering, but 

it is rarely used to analyze epidemiological time 

20 
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series. The seasonality and volatility of dengue 

counting are studied using statistical volatility 

models that link the dependence of observed 

factors to the responses (dengue counting) and also 

non-observed factors linked to the volatilities. 

 

The novelty of this study is the introduction of a 

new statistical modeling approach (combination of 

linear polynomial regression models with 

stochastic volatility models) to analyze dengue 

count data on the logarithmic scale considering a 

dengue times series data set of São Paulo city, 

Brazil from the period ranging from January 2007 

to December 2016, using a Bayesian approach with 

Markov Chain Monte Carlo (MCMC) methods13 to 

simulate samples of the joint posterior distribution 

for the parameters of the model. Stochastic 

volatility (SV) models have been widely used to 

analyze financial time series14,15 as a powerful 

alternative to the self-regressive models in the 

literature, such as ARCH (conditional 

heteroscedastic autoregressive) models introduced 

by16 and the generalized autoregressive conditional 

heteroscedastic models (GARCH) introduced by 

Bollerslev (1986), but not widely used in the health 

field17-19. In the financial area, these models are 

considered for modeling the logarithms of financial 

returns between current data and previous data (it 

can be hours, days or months) without taking into 

account the modeling of the means depending on 

covariates. 

Usually there are great computational difficulties to 

get the posterior summaries of interest considering 

SV models. These difficulties can appear in the 

form of high dimensionality and likelihood 

function without closed form, among other factors. 

In this way, existing MCMC methods like the 

Gibbs and the Metropolis-Hastings algorithms 

have been used to get the inferences (Bayesian 

point estimators and credibility intervals) for the 

parameters of the proposed model. In the 

simulation of samples of the joint posterior 

distribution13, π(θ/data) where θ is the vector of all 

parameters, using Gibbs or Metropolis-Hastings 

algorithms, it is needed to sample each parameter 

from the posterior conditional distributions π(θr/ 

θ(r), data), where θ(r) denotes the vector of all 

parameters except θr and r is associated to each one 

of the parameters of the model. To simplify the 

computational work in the iterative procedure to 

get the Bayesian inferences, the literature presents 

different free softwares to simulate samples of the 

joint posterior distribution of interest. In this study, 

it is used the OpenBugs software20 in the 

simulation of samples of the joint posterior 

distribution of interest which simplifies the 

computational work, since this software only 

requires the definition of the likelihood function for 

θ and the prior distribution π(θ).  

The paper is organized as follows: in Section 2, it 

is presented monthly dengue data in São Paulo city, 

Brazil for the period 2007 to 2016 (period of 120 

months or 10 years); in Section 3, a polynomial 

regression model and stochastic volatility is 

presented to analyze dengue data in the city of São 

Paulo; Section 4 presents the obtained results; 

finally, Section 5 presents some conclusions. 

 
Goals of the Study and the Data Set 

This study considers monthly dengue count data in 

the city of São Paulo, Brazil between the years 

2007 and 2016 and some existing relationships 

with some covariates in the same period such as 

total monthly rainfall in the previous month and 

average minimum temperature in the previous 

month (lagged data). Figure (2) shows a graph of 

the count monthly time series of patients with 

dengue in the city of São Paulo, Brazil on the 

original scale and on the logarithmic scale (data 

obtained from the Brazilian public health data site 

SINAN – Information System for Notifiable 

Diseases - 

\url{http://sinan.saude.gov.br/sinan/login/login.jsf

}) for the period between January 2007 and 

December 2016. Figure (2) also shows the total 

monthly rainfall data for the previous month and 

the average minimum temperature in the previous 

month (data obtained from the Brazilian 

meteorological data website INMET - Instituto 

Nacional de Meteorologia - 

\url{http://www.inmet.gov.br/portal/index.php?r=

bdmep/bdmep}). Figure (3) shows the monthly 

dengue counts in the city of São Paulo from 

January 2007 to December 2016 from where we 

can conclude that: 

 

 

21 
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Figure 2: Counts of reported patients with dengue in São Paulo city in temporal order. 

 

 
Figure 3: Monthly and anual counts of dengue in São Paulo city on the logarithmic scale. 

 

The monthly counts of patients diagnosed with 

dengue in the period between January 2007 and 

December 2016 (logarithmic scale) show 

seasonality and there is clearly a significant 

increase in the months from March to May of each 

year; a decrease in the period between September 

and October; after this period there is an increase 

from November of each year. 

The yearly counts of patients diagnosed with 

dengue in the period between January 2007 and 

December 2016 (logarithmic scale) show a 

decrease from 2007 to 2009; from 2009, it starts a 

consecutive increase from year to year, with a peak 

22 
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in the years 2014 and 2015; thereafter, a decrease 

begins until the year 2016. 

In Figure (3), it can be seen that for data analysis 

and statistical modeling of the data, it is necessary 

to consider polynomial linear regression models in 

the presence of the covariates (independent 

variables) month and year (temporal order) that are 

able to capture possible effects of linearity and that 

also have regression coefficients associated with 

quadratic and cubic effects. A quadratic term or 

cubic term transforms a linear regression model 

into a curve. Since the regression model has the 

covariates squared or cube month, and not the 

regression coefficient, the model remains a linear 

regression model21,22. 

The presence of a quadratic term in the model 

creates a U-shaped curve or an inverted U, as seen 

in the graphs of Figure (3). A cubic term has two 

distinct parts: one facing up and one facing down, 

that is, the curve go down, back up and back again. 

In addition to the covariates month and year, we 

also included in the linear regression model the 

total precipitation and average minimum 

temperature covariates (lagged in previous 

months). 

Also are considered seasonal effects included from 

an AR (2) model in the total dengue counting in the 

previous two months Y(t-1) and Y(t-2). 

For the definition of the models, N ≥ 1 is a fixed 

integer that registers the amount of data observed 

(in our case, it represents the monthly dengue 

counts on the logarithmic scale). Thus, initially let 

us assume the following linear regression model 

for the analysis of monthly data on the logarithmic 

scale:

 

Y(t) = βo + β1month(t)+ β2[month(t)]2+ β3[month(t)]3 + β4year(t) + β5[year (t)]2 +  

β6lagged.average.minimum.temp[t] + β7lagged.total.precipitation[t] + β8Y(t-1) + β9Y(t-2)  +  є(t)                  (1) 

 

for t = 1,2,...,120 (months) where є(t) are noises 

considered as independent and identically 

distributed random variables with a normal 

distribution N(0, 𝜎𝜖
2) and Y(t) are the monthly 

dengue counts on the logarithmic scale. This model 

is denoted by “model 1”. Under a classical 

statistical approach, the regression parameters are 

usually estimated using the least squares method 

(LSE). In this study, we opted for the use of 

Bayesian methods. 

An alternative of epidemiological interest would be 

to model the series not only to estimate the monthly 

averages in the period considered (January 2007 to 

December 2016), but also to estimate the monthly 

variances (volatilities) that are of interest to the 

public health researchers, possibly relating these 

volatilities to the occurrence of factors associated 

with the months (total monthly rainfall or 

minimum average temperatures in the previous 

month, that is,  considering lagged effects relative 

to the previous month). For this purpose, a time 

series model is considered that simultaneously 

estimate the monthly average and the monthly 

volatility. 

 

A Polynomial Regression Combined with a 

Stochastic Volatility Model for Dengue Data in 

São Paulo City 

In the presence of heteroscedasticity, that is, 

variances depending on time t, assume that the time 

series Y(t), t = 1, 2 ,. . . , N assume a combination 

of a polynomial linear regression model for months 

and years with a stochastic volatility model, and the 

inclusion of lagged effects of counts (an auto-

regressive model) and some factors that may be 

related to the incidence of dengue (total 

precipitation of monthly rainfall and minimum 

monthly average temperatures, considered as 

lagged effects relative to the previous month) for 

the analysis of dengue count data in São Paulo city 

on the logarithmic scale: 

 

Y(t) = βo + β1month(t)+ β2[month(t)]2+ β3[month(t)]3 + β4year(t) + β5[year (t)]2+         

β6lagged.average.minimum.temp[t] + β7lagged.total.precipitation[t] + β8Y(t-1) + β9Y(t-2)  + σ(t)є(t)        (2) 

  

 

where it is assumed that є(t) are noises considered 

independent and identically distributed random 

variables with a normal distribution N(0, 𝜎𝜖
2) and 

σ(t) is the square root of the variance of (1) (for 

simplicity, we can assume 𝜎𝜖
2 = 1). The variance of 

Y(t) is modeled by 𝜎𝜖
2eh(t) where h(t) depends on 

an unobserved latent variable. This model is 

denoted by “model 2”. It is important to point out 
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that the inclusion of quadratic and cubic effects of 

months and years were based on the behavior of the 

plots presented in Figure (3). Thus it is included 

cubic effects only for the covariate month. 

Remark: From model (2), it is observed that: 

 

The mean of Y(t) is given by 

E[Y(t)] = βo + β1month(t)+ β2[month(t)]2+ β3[month(t)]3 + β4year(t) + β5[year (t)]2+ 

β6lagged.average.minimum.temp[t] + β7lagged.total.precipitation[t] + β8Y(t-1) + β9Y(t-2),   since E[σ(t)є(t)] 

= 0. 

The variance of Y(t) is given by, 

var[Y(t)] = var[σ(t)є(t)] = σ2(t) since we are assuming var[є(t)] = 𝜎𝜖
2 = 1. 

 

To analyze the data set, a latent variable 

(unobserved variable) defined by an auto-

regressive model AR(2) is also introduced, for t = 

1, 2, 3, ..., N (N = 120 months) .  

 

h(1) = μ + ζ(1),  t = 1 , 

h(2) = μ+ ϕ1[h(1) - μ ]  +  ζ(2)                                                                                    (3) 

h(t) = μ + ϕ1[h(t-1) - μ ] + ϕ2[h(t-2) - μ ]  +  ζ(t),  t = 3, 4, …, N, 

 

 

where ζ(t) is a noise with a normal distribution N(0, 

𝜎ζ
2), that is associated with the latent variable h(t). 

The quantities  𝜎ζ
2, μ, ϕ1 and ϕ2 are unknown 

parameters that must be estimated (0 <  ϕ1 < 1, 0 <  

ϕ2 < 1). 

Bayesian inference procedures, based on Markov 

Chain Monte Carlo (MCMC) methods, 13  have 

been widely used to analyze stochastic volatility 

models. The main reason for using Bayesian 

methods is that, in general, we may have great 

difficulties in obtaining inferences (point and 

interval estimation) for the parameters of interest of 

the stochastic volatility model when using a 

standard classical inference approach. These 

difficulties can appear in the form of high 

dimensional and likelihood function without closed 

form, among other factors. For a Bayesian analysis 

of the model defined by (2), it is assumed prior 

distributions for the parameters μ, ϕv  and ζ = 1/𝜎ζ
2, 

v = 1, 2 given respectively  by a normal N(0,a2)  

distribution, a Beta(b, c) distribution and a 

Gamma(d, e) distribution, where Beta(b, c) denotes 

a Beta distribution with mean b/(b+c) with variance 

bc/[(b+c)2(b+c+1)] and Gamma(d,e) denotes a 

gamma distribution with mean d/e and variance 

d/e2. The hyperparameters a, b, c, d, and e are 

assumed to be known and previously specified. 

Also assume that the regression parameters βj, j = 

0, 1, …, 9 have independent normal distributions 

with known hyperparameters. Further, it is 

assumed prior independence between the 

parameters. 

 

Results 

For data analysis, initially consider the regression 

model (“model 1”) given by (1). For a Bayesian 

analysis of the model, consider the following prior 

distributions for the model parameters: β0 ~ N(3, 

1); βj ~ N(0,0.1), j = 1,2,...,9 and ζ = 1/𝜎𝜖
2~ 

Gamma(1,1). That is, we are assuming 

approximately non-informative priors. The choice 

of the hyperparameters of the prior distributions 

were base on some preliminary data analysis of the 

data, as considered for the regression parameters βj 

(small values that could be negative or positive) 

and for the parameter ζ. The OpenBugs software20 

was used in the simulation of samples of the joint 

posterior distribution of interest. Thus, the 

posterior conditional distributions13, π(θr/ θ(r), 

data), needed for the Gibbs and Metropolis-

Hastings algorithms where θ = (β0, β1,..., β9, ζ)  is 

the vector of all parameters, are not presented in 

this paper. 

The convergence of the simulation algorithm 

(Gibbs / Metropolis-Hastings) was verified from 

time series graphs of the generated Gibbs samples 

not presented for space saving. It was considered a 

“burn-in-sample” of size 111,000 discarded to 

eliminate the effect of the initial values in the 

iteractive method; thereafter, it was generated more 

400,000 Gibbs samples from where it was taken 

each 100th sample (a final sample size of 4,000) to 

obtain the posterior summaries of interest. The 

posterior summaries of interest (posterior means, 

posterior standard deviations and 95% high 
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posterior density intervals) for each parameter of 

the model are presented in Table (1). 

 

 

Table 1. Posterior summaries for “model 1” assuming dengue data in São Paulo city. 

   95% HPD Int. 

 Mean Std. Dev. Lower Upper 

β0 2.1275 0.4840 1.2040 3.0941 

β1 -0.0023 0.2150 -0.4198 0.4248 
β2 -0.0747 0.0390 -0.1541 -0.0009 

β3 0.0056 0.0020 0.0018 0.0097 

β4 -0.0816 0.0861 -0.2414 0.0970 

β5 0.0153 0.0079 0.0002 0.0305 
β6 0.0392 0.0200 0.0004 0.0769 

β7 -0.0002 0.0008 -0.0020 0.0014 

β8 0.7554 0.0852 0.5883 0.9194 
β9 -0.0634 0.0813 -0.2193 0.0958 

ζ 2.5763 0.3482 1.8857 3.2495 

From the results in Table (1), it can be seen that the 

covariates month2 (quadratic effect of month), 

month3 (cubic effect of month), year2 (quadratic 

effect of year), lagged average minimum 

temperature and Y(t-1) (lagged total of the 

previous month) have significant effects on the log 

response (dengue count) as the 95% high posterior 

density intervals for the corresponding regression 

parameters do not contain the zero value. Figure (4) 

shows the graphs of the observed series and fitted 

by the model (Monte Carlo estimators of the mean 

responses) from where it is observed a good fit. The 

needed assumptions of the fitted “model 1” 

(normality and non correlated residuals are verified 

from normal probability plots and ACF 

(autocorrelation function) of the residuals 

presented in Figure (5) where it is observed that the 

needed assumptions are well verified for “model 

1”. 

Assuming the volatility model introduced in 

Section 3 equations (2) and (3}) that is, “model 2”, 

for the dengue series in São Paulo city on the 

logarithmic scale, consider the following prior 

distributions for the parameters of the model: ϕv ~ 

U(0,1), v =1,2; ζ ~ Gama(1,1); μ ~ N(0,1); β0 ~ 

N(3, 1); βj ~ N(0,0.1), j =1,2,...,9. Observe that the 

choice of the hyperparameters was based on a 

preliminary data analysis (especially for the 

regression parameters) and non-informative priors 

for the other parameters (ϕv , ζ and   μ) where the 

prior where defined for the possible values of each 

parameter (ζ > 0, - ∞ < μ < ∞,  0 <  ϕ1 < 1, 0 <  ϕ2 

< 1). Some sensitivity analysis was made 

considering other hyperparameter values for the 

prior distributions, but the obtained inference 

results were very similar. Also, it is assumed prior 

independence between the parameters. Using the 

OpenBugs, the convergence of the simulation 

algorithm for the joint posterior distribution (Gibbs 

/ Metropolis-Hastings) was verified from time 

series plots of the generated Gibbs samples. 
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Figure 4: Observed counts and fitted model (logarithmic scale in “model 1”). 

 

 
 

 

Figure 5: Normal probability plots and PACF (Autocorrelation Function) for the residuals (logarithmic 

scale in “model 1”) 

It was considered a “burn-in-sample” of size 

111,000 samples discarded to eliminate the effect 

of the initial values in the iterative method; 

thereafter, we generated other 400,000 samples 

choosing each 100th sample  

 (a final sample of size 4000) to obtain the posterior 

summaries of interest. The posterior summaries of 

interest for each parameter of the model are shown 

in Table (2). 
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Table 2. Posterior summaries for “model 2” assuming dengue data in São Paulo city. 

   95% HPD Int. 

 Mean Std. Dev. Lower Upper 

β0 2.2235 0.4908 1.2667 3.1813 

β1 -0.1197 0.2157 -0.5270 0.3178 

β2 -0.0490 0.0378 -0.1229 0.0236 

β3 0.0042 0.0019 0.0006 0.0080 
β4 -0.0370 0.0858 -0.2019 0.1342 

β5 0.0109 0.0074 -0.0027 0.0260 

β6 0.0289 0.0188 0.0043 0.0686 
β7 -0.0002 0.0008 -0.0017 0.0013 

β8 0.8205 0.0949 0.6367 1.0090 

β9 -0.1149 0.0898 -0.2852 0.0651 
µ 0.3014 0.3014 -1.7493 -0.6465 

φ1 0.1820 0.1820 0.0015 0.6362 

φ2 0.1527 0.1527 0.0001 0.4829 

ζ 0.9603 0.9603 0.3873 3.5969 

From the results of Table (2), it is observed that the 

covariates month3 (cubic effect of month), lagged 

average minimum temperature and Y(t-1) 

(previous count month) have significant effects on 

the log(response) as the 95% credibility intervals 

for the corresponding regression parameters do not 

contain the zero value. Figure (6) shows the graphs 

of the observed series and fitted by the model  

 

(Monte Carlo estimators of the mean responses) 

from where also it is observed a good fit of the 

model. Figure (6) also shows the graphs of the 

quadratic roots of the estimated volatilities. Despite 

some covariates did not show significant effects on 

the response log(dengue count), the inclusion of  all 

covariates in the model is important to get better fit 

and better forecasts. 

 

 
 

Figure 2. Observed countings, fitted model (logarithmic scale in "model 2") and square roots of the volatilities 

The needed assumptions of the fitted “model 2” 

(normality and independence of the residuals) also 

were verified from normal probability plots and 

ACF (autocorrelation function) of the residuals 

(Figure (7)). From Figure (7), it is observed that the 
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needed assumptions are well verified for “model 

2”. 

 

 

 

 

 

Figure 7: Normal probability plots and PACF (Autocorrelation Function) for the residuals  (logarithmic 

scale in “model 2”) 

 

It is important to point out that other models in 

presence of volatilities could be considered in the 

data analysis. As a special case, it was also assumed 

``model 2'' in presence of cubic effect of year, but 

this model presented DIC (Deviance Information 

Criterion23) value equal to 347.4 that is larger to 

DIC value (equal to 262.0) of “model 2” not 

considering the presence of the cubic effect, an 

indication of better fit for the data of ``model 2'' 

presented in (2). The deviance information 

criterion (DIC) is a hierarchical modeling 

generalization of the Akaike information criterion 

(AIC) (lower DIC values indicate better models). 

 

Conclusions 

Epidemics time series usually assumes standard 

times series models as MA (moving average) or 

ARIMA models to be fitted by the data and to get 

forecasts. Alternatively, some studies introduced in 

the literature, consider polynomial regression 

Bayesian models in presence of lagged effects, 

presence of other covariates and normal errors with 

a constant variance using MCMC simulation 

methods as assumed in “model 1”. Despite the 

good fit using “model 1” (see Figure 4) for the 

dengue data set of São Paulo city, in some 

situations the public health researchers could be 

interested of the jointly modeling of the mean and 

the variance of the epidemiological time series. In 

this way,  “model 2” considering a polynomial 

regression model in presence of lagged effects and 

some covariates combined with existing volatility 

models under a Bayesian approach showed that it 

is possible to get very accurate fit for the count 

dengue data in São Paulo city (and forecasts) as 

compared with existing time series models like 

ARIMA or moving average models. Another great 

advantage of the proposed model: the estimation of 

the volatilities in each time of the disease counts 

which could be of great interest for public health 

researchers. It is important to point out that the 

ARIMA or moving average time series models are 

exploratory statistical approaches where in each 

application it is needed to reformulate the model. 

The estimated proposed Bayesian model has great 

advantages since it is not needed to update the 

model in each time to be used to get forecasts of the 

dengue counts in future time and also permits the 

inclusion of important factors (covariates) that 

could affect the epidemic counts. Better inferences 

(point estimators and more accurate interval 

inferences for the forecasts of future dengue 

counts) are obtained assuming the proposed model. 

Other advantage of the proposed model: possibility 

to incorporate prior opinion of health experts in 

form of more informative priors which usually 
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implies in better inferences. As a final remark, it is 

important to point out that the proposed modeling 

approach could be used to any other epidemiology 

time series, like COVID-19, tuberculosis, flu or 

influenza times series among many others. 
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