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Introduction: Timely Detection of outbreaks of infectious diseases can have a very important role in 

surveillance systems. the presence of  appropriate methods can have a very important role for this purpose, the 

aim of the current study was to Evaluation The Performance of Exponentially Weighted Moving Average in the 

detection of cholera outbreaks using the reported cholera outbreaks in literature 

Methods: In the current study the EWMA method was evaluated. To assess the performance of the mentioned 

methods the six real outbreaks algorithm reported in the literature were used. These reported outbreaks were the 

daily counts of cholera cases in different countries. After insertion of each outbreak, 7 days inserted as non-

outbreaks days. All analyses performed by MedCalc18.11, Stata version15 and excel 2010.  

Results: the sensitivity of EWMA was 56.4% (95% CI: 54.3%- 58.5%). The highest sensitivity for outbreak 

detection was seen in EWMA1 79.18(73.56-84.09) and the lowest was seen in EWMA4 12.2(8.4-17.0). 

EWMA2 with  λ= 0.2  had the best performance with sensitivity 69.8 (63.6-75.5) and specificity 91.4(76.9-98.2) 

and AUC= 0.80. 

Conclusion: The EWMA method can be very useful in the detection of outbreaks, but the use of this method 

along the other models may increase the sensitivity of outbreaks detection.  

Introduction 

Even with the development of preventative 

measures, cholera as a life-threatening water-

borne infectious disease which can be 

characterized by diarrhea, accompanied by 

numerous voluminous watery stools and 

vomiting, remains a public health burden in 

developing countries.  Globally, an estimated 1.3 

billion people are at risk of cholera (1). The 
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causative agent of cholera is Vibrio cholera O1, a 

Gram-negative pathogen(2). An outbreak is 

defined as more cases of a disease than expected 

in a specific location over a specific period. 

Suspicion often arises when health care workers 

report an unusual cluster or a single, unexpected 

presentation. An increasing number of methods 

are being developed to detect outbreaks of 

infectious diseases using routinely collected 

data(3). One of the most known methods and 
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algorithms used by the surveillance systems to 

detect outbreaks is Exponentially Weighted 

Moving Average (EWMA). This algorithm is a 

group-based method of statistical process control 

and efficiency in detecting small changes(4, 5). 

Early response to health events, especially public 

health emergencies with international concern is 

a major public health priority. Outbreak detection 

methods and algorithms as the main tools for 

public health surveillance systems are under the 

umbrella of temporal and spatial methods(6). 

Timely detection of outbreaks and bioterrorism is 

necessary by public health surveillance systems. 

Moreover, few published studies addressed the 

performance of statistical methods in cholera 

surveillance. This study aimed to address the 

performance of EWMA in the detection of 

outbreaks detection by using the reported cholera 

outbreaks in literature. 

Methods 

Outbreaks data:  

To assess the understudy method, six real 

outbreaks algorithm reported in the literature 

were used (7-12). These reported outbreaks 

were the daily counts of cholera cases in 

different countries. After insertion of each 

outbreak, 7 days inserted as non-outbreaks 

days. Overall the used time-series data set 

includes 280 days (245 outbreak days and 35 

non-outbreak days). The EWMA was applied 

to daily reported counts of cholera data to 

detect inserted outbreaks.  

Outbreak detection method EWMA statistics are 

defined by the following recursive equation(13): 

 

EWMAt=Yt+(1-λ)EWMA t-1.                         (1) 

 

Where Yt equals the number of suspected cases 

of cholera in day t, λ is the weighting parameter 

that has been considered as 0.1 for EWMA1, 0.2 

for EWMA2 and so on (Table 1). The upper 

control limit for outbreak detection is as follow: 

Upper Control Limit=EWMA0+ k× σEWMA 

Where k is a constant parameter, σEWMA and 

EWMA0 are the standard deviation (σ) and the 

mean (µ) of data in the absence of the outbreak. 

In the current study, the amount of K determined 

2(K=2) and the µ+2σ considered as an upper limit 

for outbreak detection  

Measures of the algorithm's performance 

the performance of EWMA algorithms in the 

detection of cholera outbreaks was measured 

using sensitivity, specificity, false alarm rate, 

likelihood ratios and area under the receiver 

operating characteristics (ROC) curve (AUC) and 

accuracy. The total number of outbreak-days was 

considered as the gold standard to calculate 

appropriate measures to evaluate the performance 

of algorithms. Accordingly, the denominator for 

sensitivity and specificity formulas was 245 

outbreak days and 35 non-outbreak days, 

respectively. AUC with 95% confidence intervals 

(95% CI) was used to compare different 

algorithms and greater values indicate better 

performance. Briefly, greater values of AUC 

indicate better performance of a specific EWMA 

algorithm in comparison to other algorithms. 

AUC values have been reported by percentage 

throughout the text and displayed in Figure. All 

analyses performed by MedCalc18.11, Stata 

version15 and excel 2010. 

Results 

Overall Sensitivity of the EWMA for all occurred 

outbreaks was 56.4% (95% CI: 54.3%- 58.5%). 

the false and negative alarm rate for EWMA was 

8 %( 95% CI: 5%- 11%), 43(40-45) respectively.  

Among the different algorithms, EWMA1 with 

λ= 0.1 had the highest sensitivity with 

79.18(73.56-84.09) in detecting inserted 

outbreaks and EWMA4 with λ= 0.4 had the 

lowest sensitivity= 12.2 (8.4-17.0) in detecting 

inserted outbreaks. Also EWMA2 with  λ= 0.2  

had the best performance with sensitivity 69.8 

(63.6-75.5) and specificity 91.4(76.9-98.2) and 

AUC= 0.80.  Tables 2 and 3 show disaggregated 
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measures of EWMA performance by different 

values of parameter entitled EWMA1 to EWMA9 

including sensitivity, specificity, false alarm rate, 

false-negative rate, positive and negative 

likelihood ratios, and Roc Area.  In total, the AUC 

of the EWMA for all of the occurred outbreaks 

was 0.74. The same values according to the 

different parameters for EWMA1 to EWMA9 are 

shown in Fig. 1 and table3.  

Table 1-Characteristics of the used algorithms in the study for outbreak detection. 

Algorithm no λ 

EWMA1 0.1 

EWMA2 0.2 

EWMA3 0.3 

EWMA4 0.4 

EWMA5 0.5 

EWMA6 0.6 

EWMA7 0.7 

EWMA8 0.8 

EWMA9 0.9 

 

Table 2- Sensitivity, specificity, false alarm rate, false-negative rate, positive and negative likelihood ratios 

of the used EWMA algorithms.  

Algorithm sensitivity specificity False 

Alarm 

rate 

False 

negative rate 

Positive 

likelihood 

ratio 

Negative 

likelihood ratio 

Accuracy 

EWMA1 79.18(73.56-

84.09) 

40(23.87-57.89) 60(40-

80) 

21(16-26) 1.32 0.52 74.29(68.75-79.30) 

EWMA2 69.8 (63.6-75.5) 91.4(76.9-98.2) 5(-2-9) 30(24-36) 8.14 0.3 72.5(66.8-77.6) 

EWMA3 74.7(68.1-80.5) 40.0(23.8-57.9) 3(0-8) 26(20-31) 1.2 0.6 69.6(63.3-75.4) 

EWMA4 12.2(8.4-17.0) 100.0 (90.0 -100.0) 0 88(84-92) - 0.9 23.2(18.4-28.6) 

EWMA5 57.5(51.1-63.8) 100.0 (90.0-100.0) 0 42(36-49) - 0.4 62.8(56.9-68.5) 

EWMA6 56.3(49.8-62.6) 100.0 (90.0-100.0) 0 44(37-50) - 0.4 61.8(55.8-67.5) 

EWMA7 57.5(51.1-63.8) 100.0 (90.0-100.0) 0 42(36-49) - 0.4 62.8(56.9-68.5) 

EWMA8 56.7(50.3-63.0 100.0 (90.0-100.0) 0 43(37-49) - 0.4 62.1(56.1-67.8) 

EWMA9 56.7(50.3-63.0 100.0 (90.0-100.0) 0 43(37-49) - 0.4 62.1(56.1-67.8) 

Overall 

EWMA 

56.4(54.3-58.5) 92(88.5-94.8 8(5-11) 43(40-45) 7.11 0.4 60.8(58.9-62.8) 

 

Table3-the ROC curve area according to different parameter for EWMA1 to EWMA9 

Column1 Total days ROC Area Std. Err. [95% Conf. Interval] 

EWMA1 280 0.59 0.04 0.50 -0.68 

EWMA 2 280 0.80 0.02 0.75 - 0.86 

EWMA 3 280 0.79 0.02 0.75 - 0.83 

EWMA 4 280 0.56 0.01 0.54   -  0.58 

EWMA 5 280 0.78 0.01 0.75  -  0.81 

EWMA 6 280 0.78 0.01 0.75  -  0.81 

EWMA 7 280 0.78 0.01 0.75 - 0.81 

EWMA 8 280 0.78 0.01 0.75 - 0.81 

EWMA 9 280 0.78 0.01 0.75 - 0.81 
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Fig 1. The area under the ROC curve for different used EWMA algorithms. 

 

Discussion 

Studying the use of EWMA algorithms reflects 

the benefits of this method in the early detection 

of outbreaks. But since this method has its 

limitations, proper use and proper positioning can 

give the best returns to the early detection of 

outbreaks. Based on a true comparison between 

the results of this study and similar studies, the 

sensitivity of the EWMA model to the 

identification of all outbreaks was compared with 

the sensitivity of this model in detecting 

influenza-induced outbreaks, which, concerning 

values of 54% versus 70% sensitivity This model 

is less likely to detect cholera outbreaks than to 

detect flu outbreaks. This comparison compares 

the false alarms of this model with the best 

performance of the model in detecting influenza 

outbreaks, and this difference is significant with 

8% vs. 2% (5) In our study, Parameter 0.2 had the 

best performance in detecting an outbreak, and in 

the same study, Parameter 0.9 was the best 

performance. This difference, which is also seen 

in other studies, indicates a lack of a single 

algorithm with an alarm and an appropriate 

feature to identify all outbreaks. (5)  However, in 

identifying some outbreaks, including meningitis, 

there is no definition of a specific threshold level 

algorithm for use in all outbreaks of this disease 

that can cover different conditions and do not 

have a proper function in all circumstances, so it 

is sometimes necessary attention to the 

epidemiology of the disease in question, the 

importance of detecting the time and cost of 

examining false alarms from different algorithms, 

even in detecting outbreaks of a disease(14) The 

results of this study on the suitability of using this 

model for detecting cholera outbreaks are 

consistent with the results of similar studies that 

look at the performance of this model in 

identifying health outcomes. The study by 

Moscarelli et al., which explores the use of this 

model in identifying a pattern When death is due 

to cardiac surgery, it has been shown that using 
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this model in monitoring reduces mortality 

following heart surgeries. (15)Other strengths of 

this approach can be easily understood by the 

clinical staff. This theme helps with quick 

diagnosis and prompt and bad interventions the 

goal is to reduce infections in infants and reduce 

the use of antibiotics in them (16) Also, due to the 

high sensitivity and high profile of this model and 

the help that early detection of infectious diseases 

in domestic animals, it can be much successful in 

reducing economic losses. (17) In general, the use 

of this model in the early diagnosis of many 

diseases suggests to its proper function in 

preventing and controlling the outbreak in time. 

(18)However, along with all the benefits 

mentioned, some studies have shown the 

limitations of this model by using It offers it in 

combination with other models. Regarding the 

weaknesses of this model, it is possible to reduce 

the ability to detect an outbreak with precision in 

control measures to reduce the false alarms of this 

model. On the other hand, if we want to pay more 

attention to the early detection of an outbreak by 

this model, the chance of false warnings and 

the subsequent costs increase (14) Also, the use 

of the EWMA model for detecting small 

outbreaks, such as the local outbreak of measles 

with a low incidence, is not a good method, and 

it is believed to detect these outbreaks 2 to 7 days 

(19) And in cases where the EWMA chart is 

used as an alert for increasing death or other 

health outcomes, the weaknesses of this model in 

such situations can be seen in the slow detection 

of adverse health outcomes (16). Therefore, the 

use of this method alone works It's not right, and 

it's best to use the combination methods that can 

best be used to detect outbreaks. (14, 20, 21) 

Conclusions 

The results of this study showed that the EWMA 

method in the detection of an outbreak has a good 

function, but the use of this model along with 

other predictive models may increase the 

sensitivity and general characteristics of 

the combined use and increase the accuracy of 

the diagnosis that is necessary for Future studies 

will address this issue. 
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