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Background: The Cox proportional hazard model has gained ground in Biostatistics and other related 

fields. It has been extended to capture different scenarios, part of which are violation of the proportionality 

of the hazards, presence of time dependent covariates and also time dependent co-efficients. This paper 

focuses on the behaviour of the Cox Model in relation to time coefficients in the presence of different 

levels of collinearity.   

Objectives: The objectives of this study are to examine the effects of collinearity on the estimates of time 

dependent co-effiecients in Cox proportional hazard model and to compare the estimates of the model for 

the logarithm and the square functions of time. 

Materials and methods: The Algorithm based on a binomial model was extended in order to incorporate 

the different correlation structures required for the study. The scaled Schoenfeld residuals plots revealed 

the behaviour of the estimated betas at different degrees of collinearity. Results and conclusions are based 

of outcome of simulation study performed only. 

Results: The estimated betas were compared to the true betas at the different level of collinearity in 

graphical pattern.   

Conclusion: The study shows that collinearity is a huge factor that influences the correctness of the 

estimates of the regressors within the framework of Cox model. 

 

 

 

 

 
 

 

 

Introduction 

Cox regression model which takes into 

account the effect of censored observations is one 

the most applicative and used models in survival 

analysis to evaluate the effects of covariates. The 

choice of time function in extended Cox 

regression model was considered for 

investigation.[1]   The extension of the Cox 

proportional hazard method for estimating 

survival time has been an attractive area of 

research in recent years.[2] An extension of the 

classical Cox proportional hazard model gave 

birth to the introduction of the time dependency 

nature of some data. Considering the predictors 
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that do respond to time changes is a possibility 

with the extended Cox model. Estimation of a 

time-varying coefficient in a Cox-type 

parameterization of the stochastic intensity of a 

point process was the focus of some researchers 

as well. [3] Such X’s are called time-dependent 

variables. If time-dependent variables are 

considered, the Cox model form may still be 

used, but such a model no longer satisfies the 

proportional hazard assumption. A time-

dependent covariate (also called time-varying 

covariate) is a term used in statistics, particularly 

in survival analysis. It reflects the phenomenon 

that a covariate is not necessarily constant 

through the whole study. For instance, if one 
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wishes to examine the link between area of 

residence and cancer, this would be complicated 

by the fact that study subjects move from one area 

to another. The area of residency could then be 

introduced in the statistical model as a time-

varying covariate. Some time-dependent 

variables in survival analyses models are income, 

marital status, location, or treatment. A large 

family of models which focuses directly on the 

hazard function was introduced. [4] The simplest 

member of the family is the proportional hazard 

model, where the hazard at time t for an 

individual with covariates ix
(not including a 

constant) is assumed to be 
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                                         (1) 

In this model 
)(0 t

 is a baseline hazard 

function that describes the risk for individuals 

with ix
=0,who serves as a reference cell or pivot, 

and 
 'exp ix

 is the relative risk, a proportionate 

increase or decrease in risk, associated with the 

set of characteristics ix
. Note that the increase or 

reduction in the risk is the same at all duration t.  

When time-dependent covariates are 

considered, the model becomes: 
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Even though the values of the variable X j (t) 

may change over time, the hazard model provides 

only one coefficient for each time-dependent 

variable in the model. Thus, at time t, there is only 

one value of the variable X j (t) that has an effect 

on the hazard, that value being measured at time 

t. i  and j are the coefficients of time 

independent and the time dependent variables 

respectively. 

In a scenario with only time-dependent 

covariates, we have  
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                                      (3) 

Mathematically, it is possible to move from a 

time dependent covariate while the relationship 

with time is a function of time (say g(t)) to a time 

dependent coefficient as follows: 
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The last equation is an Extended Cox model 

for time dependent coefficients. The application 

of the Cox model requires the validation of the 

proportional hazard model assumption. There are 

three methods commonly used to assess the PH 

assumption: (i) graphical, using, say, log–log 

survival curves; (ii) using an extended Cox 

model; and (iii) using a goodness-of-fit test.  
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Several methods have been proposed for 

checking the predictor for time dependency. 

Many graphical approaches have been proposed 

to check for proportionality. Although, the 

judgment if rather subjective and can be used as 

a first guide. Some of which are: the Kaplan-

Meier curves for parallelism, the Schoenfeld 

Residual plot to mention a few.  Smoothing spline 

and Fractional polynomial provide a means of 

obtaining the functional estimate of time 

variation. Isotonic regression as a method of 

solving the function of time was introduced. 

Another assumption is the issue of non-

informative censoring. To satisfy this 

assumption, the design of the underlying study 

must ensure that the mechanisms giving rise to 

censoring of individual subjects are not related to 

the probability of an event occurring. For 

example, in clinical studies, care must be taken 

that continuation of follow-up not depend on a 

participants medical condition. [5] 

Collinearity is a term used to describe a 

situation where by two variables are 

correlated.[6] In Regression analysis, 

Collinearity can increase estimates of parameter 

variance; yield models in which no variable is 

statistically significant even though 
2

iR
is large; 

produce parameter estimates of the “incorrect 

sign” and of implausible magnitude; create 

situations in which small changes in the data 

produce wide swings in parameter estimates; and, 

in truly extreme cases, prevent the numerical 

solution of a model. These problems can be 

severe and sometimes crippling. 

Multicollinearity has an equivalent effect and it 

occurs when more than two variables are 

correlated. [7],[8],[9] and [10] 

The paper presents the effects of collinearity 

on the estimates time-dependent coefficients of 

the Cox proportional hazard model using the log 

and square of time functions. The true values and 

the estimates by Cox model were compared using 

graphs for the two different functions of time. A 

simulation study was employed for the research.  

Review of Literature 

Some researches worked on Cox regression 

analysis in presence of collinearity. In their paper, 

they considered the analysis of time to event data 

in the presence of collinearity between 

covariates. They bent toward the ridge estimator 

because in linear and logistic regression, used as 

an alternative to the maximum likelihood 

estimator in the presence of multicollinearity. 

Based on the fact that the ridge regression 

estimator has some desired properties like having 

a small total mean square error, they generalized 

this approach for addressing collinearity to the 

Cox proportional hazards model. Simulation 

studies were conducted to evaluate the 

performance of the ridge regression estimator. 

They did not consider time dependent 

coefficients.[11] 

Murphy and Sen(1991) worked on the 

estimation of time-varying coefficient in a Cox-

type parameterization of the stochastic intensity 

of point process. They made use of sieve 

estimation procedure(Grenander, 1981) to 

estimate the coefficient. A rate of convergence in 

probability for the sieve estimation was given and 

a functional central limit theorem for the 

integrated sieve estimator was proved.[3] 

Zhangsheng and Xihong (2010) proposed a 

working independent profile likelihood method 

for the semi-parametric time-varying coefficient 

model with correlation. Kernel likelihood was 

used to estimate time-varying coefficients. 

Profile likelihood for the parametric coefficients 

was formed by plugging in the nonparametric 

estimator. For independent data, the estimator 

was asymptotically normal and achieves the 

asymptotic semi-parametric efficiency bound. 

They evaluated the performance of proposed 

nonparametric kernel estimator and the profile 

estimator, and apply the method to the western 

Kenya parasitemia data.[12] 

Examination of the goodness-of-fit testing in 

the Cox regression model with time-varying 

regression coefficients was reported in work of 

Marzec and Marzec(1997). Arjas' (1988) 

approach was used to define test statistics of the 

Kolmogorov-Smirnov and Cramér-von Mises 

types. Their asymptotic limits were shown to be 
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well-known functions of standard Brownian 

motion, leading to the construction of formal 

goodness-of-fit tests. Some numerical studies 

were included to illustrate the performance of the 

tests for moderate sample sizes.[13] 

Sylvestre and Abrahamowicz (2007), made a 

comparison of algorithm for generating event 

times conditional on time dependent covariates. 

They examined the Permalgorithm (PAs) and the 

Binomial algorithm they modified the PAs to 

incorporate the rejection sampler. They 

performed a simulation study to assess the 

accuracy, stability and the speed of the 

algorithms. It was concluded that both algorithms 

data sets that, once analyzed, provided virtually 

unbiased estimates with comparable 

variances.[14] 

Zhu et al (2017), were interested in reporting 

and methodological quality of survival analysis in 

articles published in Chinese oncology journals. 

In their work they mentioned that collinearity 

often exists in independent covariates in cox 

models.[1] 

Vatcheva et al (2018), worked on 

multicollinearity in regression analyses 

conducted in epidemiologic studies. They 

demonstrated the adverse effects of 

multicollinearity in the regression analysis and 

encourage researchers to consider the diagnostic 

for multicollinearity as one of the steps in 

regression analysis.[15] 

Some other relevant works that are 

informative and are related to the research which 

may be beneficial to reader can be seen in the 

following: [16],[17] and [18]. 

An Algorithm based on binomial model 

(Binomial Algorithm) 

This is an algorithm based on the binomial 

model. The binomial algorithm requires that the 

continuous follow-up time is partitioned into a 

finite number of m time intervals, which is 

assumed were of equal length. The algorithm 

involves three steps, performed iteratively from 

time t=1 to either the end of follow-up (t=m) or 

the time the individual is assigned the event or 

censored, separately for each individual i =1,...,n 

still at risk: 

Compute the individual conditional 

probability of event Pi,t, based on a binomial 

model with parameters j , j=1,2,…,w. 

corresponding to those of equation (1). 
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Generate tiU , from ]1,0[U  

If titi PU ,,   , assign an event to subject i at 

time t, Ti=t , and stop the follow-up for this 

subject. Otherwise, increase t by 1 unit and return 

to step 1. 

The pre-specified value of logit( 0 ) 

represents the baseline risk, i.e. the probability of 

an event for an individual with all covariate 

values set at 0. A baseline risk that is constant 

over time implies event times that are 

exponentially distributed. The higher the baseline 

risk, the bigger P, the probability of event at a 

given time, is, and the more likely that events will 

be generated early in the follow-up. However, it 

is difficult to control the exact form of the 

resulting distribution of the generated event 

times. 

Simulation Scheme 

The Binomial Algorithm reported in Sylvestre 

and Abrahamowicz (2008) was adjusted to 

incorporate two predictor variables such that they 

have time dependent coefficients and some 

structures of correlation were considered. The 

baseline hazard was set at 0.0008 for all the data 

set simulated. The functions of time (log and 

square of time) were scaled down to reduce the 

variance in the data. The data were simulated 

such that the correlation(r) level were r=0, 

0.1,0.2,0.3,…,0.9. We purposely introduced 

collinearity into the simulated datasets. This was 

done be increasing the values of correlations 

between the covariates up to 0.9. The survival 

time was generated from a uniform distribution. 

Two thousand observations were involved and a 

span of 52 weeks was the time maximum follow 

up period. The variables were generated from 

multivariate normal distribution with means 3 
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and 2 for 1X  and 2X  respectively using R code. 

The R-software was used for all simulation and 

analysis. 

Two basic functions of time were considered 

that is the logarithm of time and the square of 

time. For the time dependent beta (td.beta) for the 

logarithm of time is given below. The first 

variable is considered as a reference variable 

however it is still has a time dependent 

coefficient. Time-dependent regression 

coefficients were simulated. 

           td.beta1 = 0.01t+0.001t2  

            td.beta2= 0.1log(t)                     (*) 

For the other function, we have 

          td.beta1 = 0.01t+0.001t2  

          td.beta2= 0.001 t2                     (**) 

Equations (*) and (**) were chosen in order to 

have a reduced scale of time for the two functions 

of time.  

 

 

Results 

The results of the study are presented in this 

section. The reference covariate is first discussed. 

Subsequently, the logarithm of time was 

discussed and the square of time. The figures 

below show the effect collinearity has on the 

estimates of a time dependent coefficient. 

The scaled schoenfeld plots of the reference 

covariate(X1) for the two different combinations 

of functions of time in the absence of collinearity. 

Fig. 1 

 
The scaled Schoenfeld plots of the reference 

covariate(X1) for the two different combinations 

of functions of time in the presence of 

collinearity. The two true beta values are the same 

for the two plots. 
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Fig. 2 

 
This shows the scaled schoenfeld residuals of 

the two reference covariates at no collinearity and 

at high level of collinearity.( log of time was 

considered here). 

Fig.3 

 
This shows the scaled Schoenfeld residuals of 

the two reference covariates at no collinearity and 

at high level of collinearity (square of time was 

considered here). 
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Fig. 4 

 
For the log of time, we have the following: 

This shows the scaled schoenfeld residuals of 

the two reference covariates at no collinearity and 

at high level of collinearity (log of time was 

considered here). 

These are the plots of the scaled Schoenfeld 

residuals of some other levels of collinearity of 

the covariate with time dependent coefficient 

carrying a log function of time. 

 

Fig. 5 
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Considering the square of time, we have the 

following plots 
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Fig 6. 
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Discussion 

The effects of collinearity in the estimation of 

time dependent coefficients cannot be hidden. 

For the two cases considered, the effect of 

collinearity appeared to be the same as it 

increases the spread of the confidence interval as 

the correlation between the variables increases. 

This is very apparent in figures 1 and 2. In figure 

1(a),  which shows the scaled Schoenfeld 

residuals in the absence of collinearity in the 

reference covariate, the true beta (
 t

) is close 

to the estimated betas .The estimated betas all fall 

within the confidence interval as well. Whereas, 

as for figure 1(b), it is not until towards the end 

that the true value was not captured by the 

confidence interval in its entirety.  In figure 2 (at 

a very high level of collinearity, r=0.9) , the 

estimated betas do not have the same pattern with 

the true betas and the spread of the confidence 

interval is extremely high . This shows that the 

effect of collinearity on the estimate is high as 

such there is a reduction in the efficiency of the 

Cox model in the presence of a high level of 

collinearity. This is obvious in both figures 2 (a) 

and 2(b). 

A close look at figure 3 clearly reveals the 

difference in the estimated betas when the 

collinearity level is high and when it is absent and 

when the log transformation of time is involved. 

At no collinearity, the estimated betas and the true 

betas are close unlike the other part when 

correlation is 0.9. Like the reference variable, the 

spread of the confidence interval increases as 

correlation increases. Even when the time 

transformation considered was square of time, the 

results obtained still follows the same pattern as 

the others have been. Closeness of the estimated 

betas to the true beta reduces as correlation 

increases and the band of the confidence interval 

becomes wider.  

For the log of time as displayed in figure 7, the 

erratic behavior of the estimated betas became 

more obvious as the level of collinearity 

increases. For the square of time scenario, 

underestimation of the parameters is apparent and 

the pattern of the estimated betas seems to be 

more uniform when compared to that of 

logarithm of time but the higher the level of 

collinearity, the farther the estimates of betas 

from the true betas. 

Conclusion  

The study reveals the effects of collinearity on 

the estimates of time dependent coefficient. It 

indicates that deflection from the true values of 

betas increases as the level of correlation between 

the variables increase regardless of the function 

of time considered. These are indicated in the 

plots. This can be generalized to cases when we 

have more than two variables and also when we 

consider other different functions of time. The 

scaled Schoenfeld residuals plots were used to 

illustrate the violation of the proportionality 

assumption of the Cox model. We have been able 

to show through this study that collinearity is a 

huge factor that influences the correctness of the 

estimates of the regressors within the framework 

of Cox model. 
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