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Background and Aim: One of the statistical methods used to analyze the time-to-event medical data is 

survival analysis. In survival models, the response variable is time to the occurrence of an event. The 

main characteristic of survival data is the existence of censored data. When we have the distribution of 

survival time, we can use parametric methods. Among the important and popular distributions that can 

be used, we can mention the Weibull distribution. If the data derives from a heterogeneous population, 

simple parametric models (such as Weibull) would not fit the data appropriately. One of the methods 

which have been introduced to overcome this problem is the use of mixture models.  

 

Methods: To assess the validity of the two-component Weibull mixture model, we use a simulation 

method on heterogeneous survival data. For this purpose, data with different sample sizes were produced 

in a batch of 1000. Then, the validity of the model is checked using root mean square error (RMSE) 

criterion 

 

Results: It is obtained that increasing the sample size would decrease the RMSE in the parameters. 

However the maximum observed RMSE in all the parameters was negligible. 

 

Conclusion: The Bayesian Weibull mixture model was a proper fit for the heterogeneous survival data. 

 

Introduction: 

Survival studies consist of several statistical 

methods in which the response variable is time to 

occurrence of an event and is widely used in 

medicine, economics, biology, and social 

sciences(1). The main statistical models used in 

survival analysis are non-parametric and semi-

parametric models such as Kaplan-Meyer and 

Cox(2, 3). Weibull is one of the most popular 
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models in comparison to the others(4). The 

simple parametric models are useful for 

homogeneous data. When we are dealing with a 

heterogeneous survival data for instance, when 

different treatments are used for subjects or in the 

studies about cancer where the recurrence of the 

disease is probable, applying simple parametric 

models such as Weibull will not have a good 

fit(5). The reason is that the Weibull model does 

not consider the heterogeneous characteristics of 
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the data. One of the methods which have been 

proposed to overcome this problem is the use of 

mixture models(5). Since these models take the 

multi-modal characteristics of the data into 

account, they can be a proper substitute for the 

classic models, and as the classic models are a 

particular case of mixture models, these can also 

be used when the data is homogenous(6). 

The main idea of the mixture models was 

proposed by Berkson (1952) for the first time(7). 

Chen et al. (1985) applied the two-component 

mixture model to analyze survival data(8). Quian 

(1994) used a semi-Weibull model which consists 

of a Weibull part and another survival ratio in 

order to analyze lung cancer data(9). Marin et al. 

(2005) implemented the Weibull model on right-

censored homogenous survival data by using the 

Bayesian method with an unknown number of 

components(10). Erisoghloo in 2010 obtained 

generalized geometric-exponential mixture 

model as a new method of survival data 

analysis(11), and in 2012 in order to analyze lung 

cancer data, he used Gamma, Weibull, and Log-

normal mixture models and evaluated the fit of 

different models on the data(5). He also, in 2014, 

employed the method of moment logarithm 

estimation, which was a new method for mixture 

models, in order to estimate the model 

parameters(6). Karakoka and Erisoghloo (2015) 

compared five different methods of estimation, 

including Maximum Likelihood, Least-Squares, 

moments, moment logarithm, and percentage 

method(12). Sajed Ali (2014) applied the laplace 

mixture model using Bayesian estimation method 

with a conjugate prior(13). Abdolhagh (2016) 

used mixture Riley distribution with Bayesian 

estimation for right-censored data under different 

loss functions(14). 

In the papers mentioned, the use of covariates 

and their effect on survival time have not been 

considered. Thus, in this paper, it is aimed to 

evaluate mixture models in the presence of 

covariates by Bayesian estimation on a simulated 

dataset. 

METHODS 

As mentioned earlier, one way to analyze 

heterogeneous survival data is by using mixture 

models. For example, when different treatments 

are used for a specific disease or the disease has 

the recurrence possibility, data may contain an 

extent of heterogeneity. Therefore, in this section, 

the Weibull model, which has the most 

application among parametric models, is 

described and the goodness of these models is 

evaluated  

In survival data analysis, the survival function 

is notated by s(t) and the hazard function by h(t). 

The relation between survival function and 

distribution function is defined as below 

s(t) = P r(T > t)=1 − F(t) 

and the relationship between hazard function, 

survival function, and density function is 

h(t) = lim
∆t→0

P(t < T ≤ t + ∆t|T > t)

∆t
=

f(t)

S(t)
 

The density function of Weibull mixture 

model, which is used in this study is determined 

as 

𝑓(𝑡) =
𝛼

𝛽
 (

𝑡

𝛽
)𝛼−1 𝑒𝑥𝑝 (− (

𝑡

𝛽
)

𝛼

) , 𝑡 > 0   𝛼, 𝛽

> 0 
In this equation, α is the shape parameter, and 

β is the scale parameter. Weibull mixture model 

is defined as below 

𝑓(𝑡|𝑔, 𝜋, 𝛼, 𝛽)

= ∑ 𝜋𝑘

𝛼𝑘

𝛽𝑘
 (

𝑡

𝛽𝑘
)𝛼𝑘−1 𝑒𝑥𝑝 (− (

𝑡

𝛽𝑘
)

𝛼𝑘

)

𝑔

𝑘=1

 

In this function, g is the number of 

components of the mixture model and πk is the 

mixture component parameter and lies between 

(0,1) satisfying ∑ πk = 1
g
k=1  condition.  

Also, the mixture survival function is 

𝑆(𝑡|𝑔, 𝜋, 𝛼, 𝛽) = ∑ 𝜋𝑘 𝑒𝑥𝑝 (− (
𝑡

𝛽
)

𝛼

)

𝑔

𝑘=1
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Supposing the number of distribution 

components is g. Data with the possibility of 

right-censor is denoted by xi = (ti ,δi  ) which δi 

is an indicator function that expresses the 

censoring state of the ith observation and is 

δi = {
1  if it is right − censored

0 if the event has occurred
 

Considering the above hypothesis, the 

likelihood function is then defined as 

𝐿

= ∏ ∑ 𝜋𝑘(
𝛼𝑘

𝛽𝑘
 (

𝑡𝑖

𝛽𝑘
)

𝛼𝑘−1

)𝛿𝑖  𝑒𝑥𝑝 (− (
𝑡𝑖

𝛽𝑘
)

𝛼𝑘

)

𝑔

𝑘=1

 

𝑛

𝑖=1

 

Since the aim of this paper has covariates in 

the model, the scale parameter should be 

reparametrized in order to estimate the 

effectiveness of the covariates. Re-

parametrization of the scale parameter according 

to covariates is  

𝛽𝑘 = 𝑒𝑥𝑝 (𝛽0𝑘 + 𝛽1𝑘𝑥) 

And the likelihood function becomes  

𝐿 = ∏ ∑ 𝜋𝑘(
𝛼𝑘

𝑒𝑥𝑝 (𝛽0𝑘+𝛽1𝑘𝑥)
 (

𝑡𝑖

𝑒𝑥𝑝 (𝛽0𝑘+𝛽1𝑘𝑥)
)

𝛼𝑘−1

)𝛿𝑖  𝑒𝑥𝑝 (− (
𝑡𝑖

𝑒𝑥𝑝 (𝛽0𝑘+𝛽1𝑘𝑥)
)

𝛼𝑘

)𝑔
𝑘=1  𝑛

𝑖=1   
Bayesian estimation: 

In the Bayesian estimation of the parameters, 

we must choose a prior distribution for the 

parameters. We use the gamma distribution as a 

prior for the shape parameter, and we use a 

normal distribution as a prior distribution for the  

𝛽0𝑘 and 𝛽1𝑘 and Dirichlet distribution as the prior 

distribution for the  𝜋𝑘 Mixture component. The 

prior distributions described bellows: 

𝜋𝑘 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(∅, … , ∅) 

𝛼𝑘 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼𝛼 , 𝛽𝛼) 

𝛽𝑘 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼𝛽 , 𝛽𝛽) 

Simulation  

Since this is the first time that we have 

covariates in the model, to assess the goodness of 

the model, we use simulation methods. Here we 

use mixture Weibull model with the following 

characteristics: 

f(t)

= 0.5
1.3

e−0.69−0.2x
(

t

e−0.69−0.2x
)0.3e

(−
t

e−0.69−0.2x)1.3

+ 0.5
2.4

e0.69−0.2x
(

t

e0.69−0.2x
)1.4e

(−
t

e0.69−0.2x)2.4

 

As a result, the desired mixture survival 

function becomes: 

S(t) = 0.5e
(−

t
e−0.69−0.2x)1.3

+ 0.5e
(−

t
e0.69−0.2x)2.4

 

The main idea behind this is based on: 

As we know, survival functions take a value 

between 0 and 1. So in order to make the 

generated values random, the stages of the 

simulation are as follow: 

x: A uniform random number between 0 

and 1. 

u: A random number from the uniform 0 

and 1 distribution. 

A random number is generated from each 

prior distribution and we name it parameters. 

The mixture survival function is equated 

to u, and as the parameter values are 

generated, the equation is solved according to 

t. 

If the desired sample size is obtained, the 

process will end; otherwise, we return to 

stage 1. 

Values greater than 4 are equated to 4 and 

considered as a censored value. 

After the data simulation is completed, model 

parameters are estimated using the Bayesian 

method. 

Model comparison 

In order to assess the effectiveness of the 

model and evaluate the simulation results, the 

RMSE index is incorporated, which is: 

.𝑅𝑀𝑆𝐸 = √
∑ (�̂�−𝛽)2𝑛

𝑖=1

𝑛
 

Results 

In this paper, 1000 sample sets of sample sizes 

of 10, 20, 50, 100 and 200 have been 

generated, and the model parameters have been 

estimated, and then the average and RMSE 
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indices have been calculated which is presented 

in table 1. 

As long as the value of RMSE decreases as the 

sample size increases from 10, it can be 

concluded that that, as the sample size increases 

the model operates well; as a result, mixture 

models in the presence of covariates would be a 

proper fit to the estimate the effects of the 

covariates in heterogeneous populations.  

Table 1 

  n=10 n=20 n=50 n=100 n=200 

Alfa1 
mean 1.229 1.097 1.236 1.265 1.308 

Rmse 0.332 0.321 0.299 0.285 0.281 

Alfa2 
mean 2.369 2.441 2.432 2.352 2.448 

Rmse 0.502 0.460 0.439 0.418 0.380 

Beta01 
mean -0.688 -0.690 -0.688 -0.687 -0.687 

Rmse 0.030 0.023 0.020 0.015 0.011 

Beta02 
mean 0.691 0.688 0.689 0.689 0.688 

Rmse 0.012 0.011 0.010 0.010 0.010 

Beta11 
mean -0.202 -0.201 -0.198 -0.199 -0.201 

Rmse 0.040 0.031 0.021 0.014 0.011 

Beta12 
mean -0.202 -0.202 -0.201 -0.199 -0.201 

Rmse 0.012 0.011 0.010 0.010 0.010 

P 
mean 0.510 0.492 0.505 0.504 0.502 

Rmse 0.015 0.014 0.014 0.013 0.012 

 

Conclusion 

In this paper, the Bayesian Weibull mixture 

model was fitted to the heterogeneous survival 

data with the help of simulation methods and the 

proposed model was evaluated by Bayesian 

estimation methods. In result section, according 

to the model fitting indices, it was obtained that, 

this model was a proper fit for the heterogeneous 

survival data.  
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