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Background & Aim: In this study, efficient Support Vector Machine (SVM) algorithm for feature selection 

and classification of multi-category tumour classes of biological samples using gene expression profiles was 

proposed.  

Methods: Feature selection interface of the algorithm employed the F-statistic of the ANOVA–like testing 

scheme at some chosen family-wise-error-rate which ensured efficient detection of false-positive genes. The 

selected gene subsets using the above method were further screened for optimality using the Misclassification 

Error Rates yielded by each of them and their combinations in a sequential selection manner. In a 10-fold 

cross-validation, the optimal values of the SVM parameters with appropriate kernel were determined for 

tissue sample classification using one-versus-all approach. The entire data matrix was randomly partitioned 

into 95% training set to train the SVM classifier and 5% test set to evaluate the predictive performance of the 

classifier over 1,000 Monte-Carlo cross-validation runs. Published microarray breast cancer dataset with five 

clinical endpoints was employed to validate the results from the simulation studies. 

Results: Results from Monte-Carlo study showed excellent performance of the SVM classifier with higher 

prediction accuracy of the tissue samples based on the few gene biomarkers selected by the proposed feature 

selection method.  

Conclusion: SVM could be considered as a classification of multi-category tumour classes of biological 

samples using gene expression profiles. 

 

 

Introduction 

Early detection and determination of the 

tumour types is very important in the 

management and treatment of various forms of 

cancer. Non-clinical prediction of cancer tumours 

using gene expression profiling has been reported 

to be a credible and efficient alternative technique 

to clinical methods in the past few years due to its 

numerous advantages [1, 12, 12]. However, 

diagnosis of cancer problems with binary 

endpoints, being the most common, has been 

given prominent attention in the literature[1,2,16] 

                                                   
* Corresponding Author: dr.yah2009@gmail.com, 

while few discussions only exist for multiclass 

cancer problems[3]. 

Gene expression profiling has been utilized 

for tumor grouping in many ‘omics’ studies and 

this often resulted in the selection of gene subsets 

that have meaningful biological relationships 

with the tumour classes of the mRNA samples [1, 

2, 3, 13,14]. Thus, the selection of useful genes 

requires the selection of those gene subsets that 

are factually (statistically) significant and are 

biologically relevant to the response class. The 

advantage of such exercise has been highlighted 

in [1].  
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The relevance of a given gene subset 𝑥  as 

stated in [4] and [18] was described under three 

categories; (i) A feature (gene) 𝑥  is said to be 

strongly relevant (and predictive of the response 

class) when the removal of 𝑥 alone from the data 

always reduces the prediction accuracy of the 

classifier, (ii) A feature 𝑥  is considered to be 

weakly relevant if it is not strongly relevant on its 

own but when joined with other gene subset 𝑆 it 

improves the prediction accuracy of the classifier, 

and lastly (iii) A feature 𝑥  is considered to be 

irrelevant if it is neither strongly nor weakly 

relevant. The main objective in feature selection 

exercise, therefore, is to arrive at a classification 

model that would contain as minimum as 

possible, the most relevant gene subsets that best 

predicts the response categories of the tissue 

sample and maximizes the prediction accuracy of 

the model [17, 20]. 

Several machine learning methods have been 

introduced in the literature. Some of these 

methods were only developed for classification 

(Partial Least Squares (PLS), Support Vector 

Machines (SVM), etc.) while some others 

combined feature selection with class prediction 

(Least Absolute Shrinkage and Selection 

Operator (LASSO) [16], k-Sequential Selection 

(k-SS)[19] methods among others).  

The SVM is one of the state–of–the–art 

methods considered to be very efficient among its 

counterparts in the field of statistical learning and 

pattern recognition. Its theoretical development 

and applications have been appeared in many 

works [1, 2, 5, 6], most especially for binary 

tumor classes.  

In this study, a modified feature selection 

technique for high-dimensional genomic data is 

provided using the F-statistic of the ANOVA-like 

testing method at some chosen family-wise-error-

rate (FWER). The efficiency of the features 

selected by this method is examined on SVM 

classifier using the average Misclassification 

Error Rates (MERs) and some other performance 

indices based on simulated and published 

microarray breast cancer datasets. 

Material and Methods 

Data Description 
Two types of data were employed in this 

study. The first is a simulated high-dimensional 

dataset with multi-class response class. The 

second dataset is a real-life gene expression high-

dimensional breast cancer data set with five 

distinct sub-tumor groups.  

Simulated Dataset 
Multiclass response high-dimensional dataset 

with 𝑛 = 150  samples and 𝑝 = 1000  genes (n 

<< p) was simulated from multivariate normal 

distribution following the procedures adopted in 

[2, 3]. The data have three response class 𝑦 with 

the class labels 𝑦 = 1, 2 and 3 if a given tissue 

sample belongs to response classes (groups) 1, 2 

and 3 respectively.  

The entire 𝑛 × 𝑝  data matrix was simulated 

such that 50 × 1000  data matrix was each 

simulated for the tissue samples in each of the 

response groups 1, 2 and 3 with 𝑛1 = 50, 𝑛2 =

50  and 𝑛3 = 50 tissue samples from groups 1, 2 

and 3 respectively each with 1000 gene variables 

and 𝑛1 + 𝑛2 + 𝑛3 = 𝑛 . That is, on each tissue 

sample (observation), 1000 genes expression 

profiles were simulated. 

Out of the 1000 simulated gene expression 

profiles across the three response groups, 10 of 

them with gene labels 𝑔1 , 𝑔2 , … , 𝑔10  were 

simulated to be differentially expressed gene 

biomarkers and correlated with the response 

groups 𝑦 . To achieve this, each of them was 

simulated from the mixture of three multivariate 

Gaussian densities with means µ1, µ2 and µ3 and 

variance-covariance matrices ∑1 , ∑2 and ∑3 

respectively, µ1, µ2 , µ3 > 0  and µ𝑗 ≠ µ𝑗′ ,  𝑗, 𝑗 ′ =

{1,2,3} . That is, (𝑔1 , 𝑔2 , … , 𝑔10)|𝑦 ~ [𝜋1 ∗

𝑁(µ1, ∑1) + 𝜋2 ∗ 𝑁(µ2, ∑2) + 𝜋3 ∗ 𝑁(µ3, ∑3)] 

with the mixing parameter 𝜋𝑗 =
1

3
 for all 𝑗 , 𝑗 =

1,2,3.  
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The remaining 990 genes with gene labels 

𝑋11, 𝑋12, … , 𝑋1000  and possess relatively low 

expression levels were simulated from 

multivariate normal densities with means µ and 

variance-covariance matrix Σ.  In all cases, the 

covariance matrix ∑ defined as ∑ = {𝜎𝑖𝑗}, has a 

block structure such that: 

𝜎𝑖𝑗 = {
0.2, 𝑖𝑓|𝑗 − 𝑖| ≤ 5

0,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

An overview of the simulated microarray high 

dimensional data structure with multiclass 

responses is provided in Table 1. 

 

 

Table 1:  An overview of the simulated multiclass microarray data structure  

Sample 

units 

Response 

class labels 𝒚 

Gene labels 

𝑔1 , 𝑔2 , … , 𝑔10 𝑋11, 𝑋12, … , 𝑋1000 

1 

2 

. 

. 

50 

1 

. 

. 

. 

1 

𝜇1 = 2 

𝜇 = 3 

51 

. 

. 

. 

100 

2 

. 

. 

. 

2 

𝜇2 = 4 

101 

. 

. 

. 
150 

3 

. 

. 

. 
3 

𝜇3 = 3.5 

 

 

Published Datasets 
The real-life microarray cancer data used in 

this work is a published microarray breast cancer 

dataset than contained 456 gene expression 

profiles measured on 85 tissue samples with five 

distinct types of breast cancer tumours as the 

response classes [3, 9]. The five response classes 

are labeled A, B, C, D, E for ease of 

identification. The data can be accessed at 

https://github.com/ramhiser/datamicroarray/

wiki/Sorlie-(2001) 

Methodology 

Feature Selections 
By the high dimensional nature of the data 

employed with small sample units (n) and large 

number of features (p),𝑛 ≪ 𝑝, the identification 

and selection of the few relevant gene biomarkers 

that are correlated with the tissue samples is very 

desirable. As a result, efficient method for 

extracting the informative features from the data 

was employed in this work given the nature of the 

data. 

In both the simulated and real life datasets 

described above, the feature selection is 

performed using the F-statistic given by   

                                                                   

𝐹 =
1

𝑘−1
∑ 𝑤𝑗(�̅�𝑗−�̅�′)2𝑘

𝐽=1

1+
2(𝑘−2)

𝑘2−1
∑ (

1

𝑛𝑗−1
)(1−

𝑤𝑗

𝑤
)

2
𝑘
𝐽=1

  ~𝐹𝑘−1,𝑣     (1) 

where 𝑤𝑗 =
𝑛𝑗

𝑆𝑗
2 , 𝑤 =  ∑ 𝑤𝑗

𝑘
𝑗=1 , �̅�′ =

∑ 𝑤𝑗�̅�𝑗
𝑘
𝑗=1

𝑤
  

and 𝑘 − 1, 𝑣 in (1) are the degrees of freedom 

with 

https://github.com/ramhiser/datamicroarray/wiki/Sorlie-(2001)
https://github.com/ramhiser/datamicroarray/wiki/Sorlie-(2001)
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  𝑣 =
𝑘2−1

3 ∑ (
1

𝑛𝑗−1
)(1−

𝑤𝑗

𝑤
)

2
𝑘
𝑗=1

                                  (2) 

This feature selection process employed the F-

statistic in the Analysis of Variance (ANOVA)-

like testing method for comparing more than two 

treatment means at some chosen family-wise-

error-rate (FWER), 𝛼𝐹 . However, in order to 

control the number of false positive genes in the 

feature selection process, an adjusted Type I error 

level 𝛼 is used using the Sidak [11] method given 

by; 

         𝛼𝑠 = 1 − (1 − 𝛼𝐹)
1

𝑝⁄          (3) 
 

where 𝑝  is the number of features in the 

microarray data. Thus, for any given FWER 𝛼𝐹, 

the value of Sidak 𝛼𝑠  in (3) is determined and 

used for feature selection. In this study, the six 

different 𝛼𝐹  values (in %) considered are 1%, 

5%, 10%, 15%, 20% and 100%. 

In its implementation, a particular feature 

say 𝑋𝑗 will be regarded as a biomarker gene 

feature if its p-value, say 𝑝𝑗 computed from 

the F-statistic in (1) is less than 𝛼𝑠  (i.e. if 

𝑝𝑗 < 𝛼𝑠) [1]. 

  SVM Implementation 
The basic idea of the SVM as pointed out in 

[1] is to construct an optimal separating 

hyperplane for two-response groups gene 

expression data by mapping the data to a higher-

dimensional space.  This involves finding a 

hyperplane defined by a weight vector 𝒘 and a 

bias  𝒃 such that the separation of the two groups 

is maximized in a specific sense. Using kernel 

representations, linear separation in the higher-

dimensional space corresponds to a nonlinear 

decision boundary in the original space. More 

details on this are provided in [1, 2, 5, 6] and the 

like.  

In the case of 𝑘 classes response groups with 

𝑘 > 2, the concept of separating hyperplane upon 

which the traditional SVM was developed does 

not lend itself naturally to a such number of 

groups [7,19]. Hence, the practice is to partition 

the 𝑘  classes into several binary cases using 

either the one-versus-one or one-versus-all 

approach [3] as adopted here. The idea is to fit 𝑘 

SVMs and at each time comparing one of the 𝑘 

classes to the remaining 𝑘 − 1 classes. The 𝑘𝑡ℎ 

response class will be coded as +1  while the 

remaining class groups will be coded as −1. 

As a kernel-based machine learning method, 

the traditional SVM uses four types of kernel 

which include the Linear, Polynomial, Radial 

Basis Function (RBF) and Sigmoid kernels. The 

type of kernel employed plays a major role in the 

performance of the SVM method and this is 

largely dependent on the structure of the data 

being analyzed [1, 2, 5, 6]. As a result, the 

appropriate kernel type that is most efficient on 

the data being analyzed has to be determined 

before the classification task described above is 

performed.  

For high-dimensional data when 𝑛 ≪ 𝑝, the 

linear kernel has been found to be suitable [1] and 

this shall be employed here for the case when all 

the gene features are to be used by the SVM 

classifier. On the other hand, when several gene 

subsets as determined by the feature selection 

results of the F-statistic at each of the chosen 𝛼𝐹 

levels of 1%, 5%, 10%, 15%, 20%, and 100% are 

passed into the SVM algorithm for classification, 

the RBF kernel which has been reported to be 

more efficient on low dimensional data (the case 

of 𝑛 ≫ 𝑝) [1] shall be employed. Generally in 

this work, the optimal values of the SVM and 

kernel parameters for each dataset are determined 

through grid search in a 10-fold cross-validation 

for efficient SVM classification results.   

Finally, the entire data matrix is randomly 

partitioned into training and test sets using 95:5 

splitting ratio as adopted elsewhere [2, 15]. By 

this, 95% of the data are randomly sampled to 

train the SVM classifier while the remaining 5% 

data are used to assess its performance over 1000 

Monte-Carlo Cross-Validation (MCCV) runs 

based on Misclassification Error Rates (MERs) 

and some other model’s assessment criteria. 
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Generally, the SVM classification method 

described above is implemented on the gene 

subsets selected using the F-statistic at each of the 

six chosen 𝛼𝐹 values of 1%, 5%, 10%, 15%, 20% 

and 100% considered. The performance of the 

SVM classifier using each gene subset is then 

assessed by MER and other performance indices. 

As a further step to optimize the genes 

selected using the p-values of the F-statistic, all 

the genes present in the data are ranked in 

increasing order of their p-values contributions 

using a cluster of the first(best) 5, the first 10, the 

first 20 and the first 25 genes for SVM 

classification. The gene subset with the least 

MER of the SVM classifier is then observed. 

These observed genes were then reselected to 

optimize the feature selection phase for efficient 

SVM classification. 

The proposed SVM algorithm was 

implemented using e1071 package within the R 

environment (https://www.R-project.org/).  

The proposed SVM algorithm explores the 

following steps: 

Step 0:   Start 

Step 1:   Determine the genes (features) that 

are differentially expressed from among the p 

genes in the entire data using the F-statistic in 

equation (1) at a chosen 𝛼𝐹 level by testing the  

hypothesis set: 

 𝐻0: 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑘 (all the genes k 

are not differentially expressed) 𝑣𝑠. 

𝐻1: 𝑁𝑜𝑡 𝐻0   (gene g is differentially 

expressed)  

Step 2:  Fit the SVM classifier on each of the 

gene subsets generated in step 1 and determine 

the values of SVM and kernel’s parameters for 

further use. 

Step 3:  Rank the genes in the gene subset 

obtain in step 3 by their respective p-values 

Step 4:  Fit the SVM classifier on each of the 

gene subsets obtained by the p-values ranks 

and select the subset with minimum average 

Misclassification Error Rate (MER). 

Step 5:   End 

The proposed algorithm above is similar to the 

one proposed in [1] with a slight modification in 

the feature selection method to accommodate 

multiclass responses as presented in [10]. 

Data Analysis 

The analysis of the simulated and real-life 

datasets following the proposed SVM algorithm 

is presented in this section. 

In the analysis of each dataset, the data were 

randomly partitioned into a 95% training test and 

5% test set. By this, full information on the 95% 

of the sampled data was used to train the SVM 

algorithm with the performance of the 

classification model so constructed were assessed 

on the remaining left-out 5% test sample data 

over 1000 Monte-Carlo Cross-validation runs.      

As a first step, the feature selection was 

performed on the two data sets using the F-

statistic as presented in (1) through (3). Here, the 

strength of association between individual gene 

variable and the multi-category response class is 

determined by the p-values that are associated 

with their respective F-statistic values. For 

instance, if all the 1000 genes in the simulated 

dataset are ranked by their respective p-values 

(computed from their F-statistic values) in 

ascending order of magnitude, the gene variable 

having the least p-value is adjudged to be the 

most strongly related to the response class 

followed by the next and so on.   

The strength of the relationship of each of the 

gene variables with the response classes in each 

dataset was determined by their respective p-

values with which all the genes were ranked 

accordingly. The ranked genes were selected 

based on the computed thresholds of Sidak 𝛼𝑠 

values in (3) as determined by the FWER 𝛼𝐹 . 

Thus, for a given 𝛼𝐹, the gene subsets whose p-

values are not more than the computed Sidak 

alpha value �̂�𝑠  were selected from among the 

ranked genes as the differentially expressed genes 

and these were passed into SVM algorithm for 

classification.  

Besides the use of the Sidak alpha value �̂�𝑠 as 

a cut-off value to exclude the less differentially 

expressed genes among the ranked ones, an 
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alternative method adopted for gene selection 

here is to selected the first k genes among the 

ranked genes where k = 5, 10, 15, 20 and 25. 

Thus, the first 5, first10, first15, first 20 and first 

25 genes were selected from the ranked genes for 

SVM implementations. By this, it is possible to 

determine the marginal contribution brought into 

the performance of the SVM algorithm by the 

additional gene variables added at each gene 

selection. 

More generally, at each SVM implementation, 

the SVM’s and kernel’s parameters were 

efficiently determined for each data set over 10-

fold cross-validation.   

Results 

The results of the proposed SVM algorithm 

for feature selection and classification of tumor 

samples with multiclass responses for both the 

simulated and published breast cancer dataset are 

presented in this section. 

Results for Simulated Data 
The analysis started by performing features 

selection on all the 1000 simulated genes using 

the F-statistic in (1). The set of differentially 

expressed genes selected at the chosen different 

FWER as used in the computation of Sidak alpha 

in (3) are presented in Table 2.

 
Table 2: The number of dif ferentially expressed genes (Biomarkers) selected using the F-Statistic at dif ferent 
FWER 𝛼𝐹 for simulated multiclass data . 

𝜶𝑭 No. of 

genes selected 

Genes Selected 

1% 9 𝑔6 , 𝑔10 , 𝑔2, 𝑔3 , 𝑔1 , 𝑔5, 𝑔9, 𝑔8 , 𝑔7 

5% 10 𝑔6 , 𝑔10 , 𝑔2, 𝑔3 , 𝑔1 , 𝑔5, 𝑔9, 𝑔8 , 𝑔7 , 𝑔4 

10% 10 𝑔6 , 𝑔10 , 𝑔2, 𝑔3 , 𝑔1 , 𝑔5, 𝑔9, 𝑔8 , 𝑔7 , 𝑔4 

15% 11 𝑔6 , 𝑔10 , 𝑔2, 𝑔3 , 𝑔1 , 𝑔5, 𝑔9, 𝑔8 , 𝑔7 , 𝑔4, 𝑋284 

20% 11 𝑔6 , 𝑔10 , 𝑔2, 𝑔3 , 𝑔1 , 𝑔5, 𝑔9, 𝑔8 , 𝑔7 , 𝑔4, 𝑋284 

100% 1000 All the 1000 genes 

The set of the selected genes at each chosen 

FWER was used to train SVM classifier and 

determine the optimal values of the RBF kernel’s 

parameter (for low dimensional data space), the 

Linear kernel’s parameter (for high-dimensional 

space) and the SVM parameter the results of 

which are presented in Table 3. In a 10-fold cross-

validation runs, the minimum cross-validation 

error of the SVM classifier at each optimal 

parameter pair is equally reported in Table 3.

Table3: Results of  the optimal tuning parameter  values of SVM classifier with the Simulated Multiclass 
microarray data. 

No of genes Choice of Kernel Kernel 

Parameter γ 

SVM 

Parameter C 

Minimum 

CV Error 

9 RBF 0.01 1 0.3000 

10 RBF 0.01 10 0.3000 

10 RBF 0.01 10 0.3000 

11 RBF 0.001 100 0.2533 

11 RBF 0.001 100 0.2533 

1000 LINEAR N/A 0.01 0.5000 
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The optimal kernel and SVM parameters 

determined as reported in Table 3 were used to 

train SVM classifier on each of the selected gene 

subsets the performance of which were examined 

using the test samples over 1000 MCCV runs. 

The classification results as provided by various 

performance indices are presented by Table 4. 

The plot of the average MER yielded by SVM 

algorithm over different gene subsets selected at 

various FWERs is presented by Fig 1.  

 

 
Figure 1: Graph of MERs yielded by SWM algorithm at different selected gene subsets by p -value rank with 
FWERs thresholds .  

 

 

 
Table 4: Result of the SVM classifier  on each selected gene subsets at varying qqFWERs from the simulated 
data. The number of genes at which the best classif ication accuracy was achieved by the classif ier is 
asterisked (*).   

Performance Measure FWER (𝜶𝑭) 

1%  5%  10%  15%  20%  100%  

No of genes  9 10 10 11* 11 1000 

MER  0.2947 0.2949 0.2949 0.2774 0.2774 0.8145 

CCR (%) 70.530 70.510 70.510 72.260 72.260 18.550 

Sensitivity A  0.6218 0.6286 0.6286 0.6349 0.6349 0.3259 

Sensitivity B  0.6550 0.6471 0.6471 0.6732 0.6732 0.3477 

Sensitivity C  0.8965 0.8765 0.8765 0.8955 0.8955 0.3264 

Specificity A  0.7890 0.7591 0.7591 0.7906 0.7906 0.6495 

Specificity B  0.8593 0.8548 0.8548 0.8516 0.8516 0.6731 

Specificity C  0.9272 0.9538 0.9538 0.9526 0.9526 0.6980 

Positive Predicted Value A  0.6001 0.5702 0.5702 0.6102 0.6102 0.1766 

Positive Predicted Value B  0.7196 0.7155 0.7155 0.7126 0.7126 0.2261 

Positive Predicted Value C  0.8741 0.9176 0.9176 0.9178 0.9178 0.2425 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

M
ER

Gene subsets by Feature selection
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Negative Predicted Value A  0.8036 0.8030 0.8030 0.8113 0.8113 0.6036 

Negative Predicted Value B  0.8124 0.8122 0.8122 0.8240 0.8240 0.6289 

Negative Predicted Value C  0.9630 0.9573 0.9573 0.9640 0.9640 0.6221 

Results from Table 4 showed that the SVM 

classifier provided the best classification results 

using only 11 gene subsets selected at 𝛼𝐹 =

15% . At this gene subset, the classification 

accuracy (CCR) of the SVM classifier was about 

72% with appreciable results reported on all other 

performance indices.  It is quite interesting to note 

that the performance of the SVM classifier was 

worst with about 18% classification accuracy 

when 1000 gene expression profiles selected at 

𝛼𝐹 = 100% were employed for classification. 

 

 
Figure 2: Graph of MERs yielded by SWM algorithm at different selected gene subsets up to the f irst 25 
genes by p-value rank.

 Table 5 presented the results of the kernel and 

SVM parameters using the first 5, first 10, first 

15, first 20 and first 25 genes among the ranked 

genes selected by the p-values of the F-statistic 

values. The results of the SVM classifiers based 

on these selected genes are presented in Table 6.  

 
Table 5: Results of RBF and SVM tuning parameter for each of the ranked gene subsets for the simulated 
data. 

No. of genes Selected by 

p-value ranks 

Kernel 

Parameter 𝜸 

SVM 

Parameter 𝑪 

Minimum 

CV Error 

   5 0.05 1 0.3533 

 10 0.01 10 0.3000 

 15 0.01 1 0.2533 

 20 0.00001 10000 0.2000 

 25 0.1 1 0.1933 
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Table 6: Result of the SVM classifier  on each selected gene subsets up to the f irst 25 genes selected by 

p-value rank from the simulated data.  The number of genes at which the best classif ication accuracy was 
achieved by the classif ier is asterisked (*).  

Performance Measure Gene subset by p-value ranks 

No of genes  5 10 15 20* 25 

MER  0.3783 0.2949 0.2311 0.1887 0.2280 

CCR (%) 62.17 70.51 76.89 81.13 77.20 

Sensitivity A  0.5319 0.6286 0.7614 0.7701 0.8068 

Sensitivity B  0.5713 0.6471 0.7096 0.8110 0.6829 

Sensitivity C  0.7980 0.8765 0.8585 0.8605 0.8625 

Specificity A  0.7051 0.7591 0.7985 0.8554 0.7946 

Specificity B  0.8144 0.8548 0.9312 0.9135 0.9329 

Specificity C  0.9250 0.9538 0.9332 0.9530 0.9426 

Positive Predictive Value A  0.4909 0.5702 0.6665 0.7446 0.6699 

Positive Predictive Value B  0.6331 0.7155 0.8491 0.8343 0.8523 

Positive Predictive Value C  0.8553 0.9176 0.8829 0.9120 0.8959 

Negative Predictive Value A  0.7472 0.8030 0.8688 0.8800 0.8890 

Negative Predictive Value B  0.7732 0.8122 0.8504 0.9015 0.8384 

Negative Predictive Value C  0.9298 0.9573 0.9508 0.9520 0.9522 

Results for Published Data 
The same procedures adopted to analyze the 

simulated dataset and obtain the various results as 

reported in Tables 2 to 6 were also adopted to 

implement the SVM classifier on the real-life 

cancer data set. 

 

 

 

 

 
Table 7: Result of the optimal tuning parameter values of SVM classifier selected gene subsets from the 

Breast Cancer data. 

𝜶𝑭 level in % 

(No of genes selected)  

Choice of 

Kernel  

SVM 

 Parameter C  

Minimum 

CV error  

1%  (90)  Linear  0.01  0.0681  

5% (131)  Linear  0.01  0.0792  

10% (138)  Linear  0.01  0.0792  

15% (155)  Linear  0.01  0.0681  

20% (165)  Linear  0.01  0.0792  

100% (456)  Linear  0.01  0.1042  

Feature selection with different FWERs was 

performed to obtain varying subsets of gene 

combinations using the F-statistic. These were 

used by the SVM algorithm to determine the 

optimal parameters of the kernel and SVM 

method over 10-fold classification results of 

which are presented in Table 7. Since the number 

of genes, p selected for SVM implementation at 
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each of the chosen FWER is more than the 

number of tissue samples, n in the data, the linear 

kernel, which is most appropriate in this case, was 

employed in the implementation of SVM 

algorithm as shown in Table 7.   

The classification results of the SVM 

algorithm based on the various gene subsets 

selected at different FWERs are presented in 

Table 8. Also, the results of the SVM classifier 

using the first 25 selected genes ranked by their 

p-values as computed from the values of their F-

statistics are presented in Table 9.

Table 8: Result of  the SVM method on each selected gene subsets at  varying FWERs from the Breast cancer 
data. The number of genes at which the best classif ication accuracy was achieved by the classif ier is 
asterisked (*). 

Assessment Criteria  FWER (𝜶𝑭) 

1% 5% 10% 15% 20% 100% 

No of genes 90* 131 138 155 165 456 

MER  0.0692 0.0822 0.0845 0.0690 0.0820 0.0927 

CCR(%) 93.080 91.780 91.550 93.100 91.800 90.730 

Sensitivity A 1.0000 1.0000 1.0000 1.0000 1.0000 0.9123 

Sensitivity B  0.9076 0.8382 0.8406 0.9074 0.9074 0.8983 

Sensitivity C  0.9355 0.9993 1.0000 0.9895 0.9935 0.9312 

Sensitivity D  0.7324 0.6573 0.6298 0.7269 0.6667 0.8246 

Sensitivity E  0.9990 0.9950 0.9968 0.9808 0.9736 0.9440 

Specificity A  0.9998 1.0000 1.0000 1.0000 1.0000 0.9995 

Specificity B  0.9893 0.9901 0.9901 0.9897 0.9882 0.9803 

Specificity C  0.9997 1.0000 1.0000 1.0000 1.0000 0.9977 

Specificity D  0.9857 0.9734 0.9748 0.9785 0.9752 0.9640 

Specificity E  0.9279 0.9228 0.9184 0.9388 0.9264 0.9344 

Positive Predictive Value A  0.9982 1.0000 1.0000 1.0000 1.0000 0.9961 

Positive Predictive Value B  0.9209 0.9195 0.9197 0.9232 0.9120 0.8732 

Positive Predictive Value C  0.9979 1.0000 1.0000 1.0000 1.0000 0.9877 

Positive Predictive Value D  0.9101 0.8258 0.8260 0.8537 0.8274 0.8162 

Positive Predictive Value E  0.8852 0.8815 0.8689 0.9022 0.8807 0.8897 

Negative Predictive Value A  1.0000 1.0000 1.0000 1.0000 1.0000 0.9832 

Assessment Criteria 1% 5% 10% 15% 20% 100% 

No. of genes 90* 131 138 155 165 456 

Negative Predictive Value B  0.9841 0.9761 0.9764 0.9847 0.9847 0.9811 

Negative Predictive Value C  0.9863 0.9995 1.0000 0.9957 0.9979 0.9850 

Negative Predictive Value D  0.9463 0.9328 0.9285 0.9457 0.9351 0.9630 

Negative Predictive Value E  0.9986 0.9950 0.9964 0.9884 0.9821 0.9656 
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Figure 3: Graph of Misclassif ication Error Rate (MER) of SVM method for the Breast cancer data at dif ferent 
FWERs (in %).  The numbers of genes selected are in parenthesis.  

Table 9: Classif ication results of SVM method on each selected ranked gene subsets from the Breast Cancer 
data. 

Performance Measure Gene subset by p-value ranks 

No of genes 5 10 15 20 25* 

MER  0.2870 0.2010 0.1565 0.1675 0.1145 

CCR(%) 71.300 79.900 84.350 83.250 88.550 

Sensitivity A 0.9982 1.0000 1.0000 0.9994 0.9994 

Sensitivity B  0.6454 0.7490 0.6762 0.7611 0.7579 

Sensitivity C  0.6206 0.9049 0.8686 0.9824 0.9863 

Sensitivity D  0.3456 0.3770 0.6728 0.5861 0.7126 

Sensitivity E  0.8209 0.8678 0.9004 0.8159 0.9055 

Specificity A  0.9875 0.9988 0.9885 0.9882 0.9875 

Specificity B  0.9878 0.9875 0.9640 0.9584 0.9770 

Specificity C  0.9590 0.9619 0.9726 1.0000 0.9992 

Specificity D  0.8395 0.9019 0.9309 0.8932 0.9377 

Specificity E  0.8539 0.8821 0.9464 0.9518 0.9499 

Positive Predicted Value A  0.9445 0.9946 0.9514 0.9505 0.9487 

Positive Predicted Value B  0.8863 0.8939 0.7219 0.7095 0.8294 

Positive Predicted Value C  0.7405 0.8240 0.8658 1.0000 0.9951 

Positive Predicted Value D  0.2940 0.4279 0.6603 0.5150 0.6836 

Positive Predicted Value E  0.7731 0.8137 0.9091 0.9060 0.9231 

Performance Measure Gene subset by p-value ranks 

No of genes 5 10 15 20 25* 

Negative Predicted Value A  0.9993 1.0000 1.0000 0.9995 0.9995 

Negative Predicted Value B  0.9488 0.9625 0.9523 0.9638 0.9631 

Negative Predicted Value C  0.9278 0.9816 0.9726 0.9965 0.9974 

Negative Predicted Value D  0.8670 0.8808 0.9323 0.9183 0.9454 

Negative Predicted Value E  0.8934 0.9192 0.9462 0.9035 0.9462 
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Discussion of Results 

This work presents an efficient algorithm for 

implementing Support Vector Machine method 

for feature selection and classification of 

biological samples in multiclass response cancer 

tumor problems. The proposed feature selection 

technique in this study was able to detect and 

selected all the differentially expressed genes at a 

very low 1% FWER in Monte-Carlo study as 

presented in Table 2. Although, very few other 

genes were also detected as differentially 

expressed and this may be due to the value of the 

parameters specified in the simulation study.  

The SVM algorithm as implemented in this 

work yielded good prediction accuracies (low 

misclassification error rates) with few selected 

biomarker genes than when all the available gene 

variables were used for classification of the 

response classes. This is an indication that the 

presence of noisy (irrelevant) genes in the set of 

features employed may adversely affect the 

performance of a good classifier.  

The determination of the optimal values of the 

kernel and SVM parameters that are desirable and 

suitable for a given data structure play important 

roles in improving the performances of the SVM 

classifier. This is evident by the results of cross-

validation error rates reported by the SVM at the 

optimal values of the kernel and SVM parameters 

as reported in Tables 3, 5 and 7 for the two data 

sets analyzed here.  

Considering the performance of the SVM 

classifier at the chosen different FWERs, 

classification results reported in Table 4 showed 

that the classifier yielded the best prediction 

accuracy (PA) at 15% FWER at which only 11 

gene subsets were selected and employed by 

SVM method for classification of the response 

class in the simulated data. The PA yielded by 

SVM classifier with these 11 gene biomarkers is 

about 72%. It can be observed that more genes 

selected at higher values of FWER especially 

when all the genes variables were employed (at 

𝛼𝐹 = 100%) clearly worsened the performance of 

the SVM classifier with the poorest PA of about 

18%! 

Results from Table 6 showed improved 

performance of the SVM algorithm as the number 

of gene subsets used increases among the ranked 

genes beginning from the first 5 genes up to the 

first 20 genes on the rank after which the 

prediction accuracy (PA) of the SVM decreases 

for simulated data (i.e. first 5 (PA= 62.17%); first 

10 (PA = 70.51%); first 15(PA = 76.89%); first 

20 (PA = 81.13%); first 25(PA = 77.2%)). The 

results of other performance indices like the 

sensitivity, specificity, positive and negative 

predictive values followed this same trend as can 

be observed from the classification results in 

Table 6. These results, therefore, showed that 

inclusion of additional five gene variables from 

20 to 25 genes into the SVM algorithm failed to 

improve the efficiency of the classifier since its 

performance becomes worst off using more than 

20 gene variables.   

In the published microarray breast cancer 

dataset, the fewer number of genes selected by the 

feature selection procedure using different values 

of FWER as shown in Table 8 indicated that the 

breast cancer data contain some combination of 

genes that are complex in interacting with each 

other to produce multiclass response signal. It 

was observed that at 1% FWER, optimal gene 

subsets with 90 genes yielded high prediction 

accuracy having the least misclassification error 

rates among other gene subsets. The selected 

gene subsets together with their respective 

optimal parameter values were employed in the 

classification of the 5 different types of breast 

cancer. The results of the SVM algorithm for each 

gene subset shown in Table 8 indicates an 

appreciable result with gene subsets having 90 

gene signatures in term of misclassification error 

rates and other performance measures. The gene 

signature in the optimal gene subsets was ranked 

as earlier mentioned and optimal values of the 

parameter using the RBF kernel were obtained 

for each of the ranked subsets as shown in Table 
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9. The result of the SVM classifier on each of the 

ranked subsets also follows the pattern observed 

in the simulated data result. An appreciable 

increase in the accuracy (i.e. first 5 – 71.3%, first 

10 – 79.9%, first 15 – 84.35%, first 20 – 83.25%, 

and first 25 – 88.55%) of the algorithm from each 

ranked subsets was noticed with a slight fall in the 

accuracy when the number of genes is twenty-

five. This indicated that some noisy (false 

positive) genes were present in the gene 

combination at the ranked subset of the first 

twenty genes. 

Conclusion 

An efficient algorithm for feature selection 

and classification of tissue samples with support 

vector machine in high-dimensional microarray 

multiclass responses is presented in the study.  

As common in many feature selection and 

classification studies with microarray cancer data 

where the data will possess greater number of 

genes variables that are purely uncorrelated with 

the clinical outcomes of the tissue samples, the 

new proposed method in this study yielded 

appreciable improvement in its ability to identify 

and select few gene biomarkers that seems to be 

biologically related to the response classes of the 

tissues samples. This has tremendously improved 

the performance of the SVM classifier that 

employed the few selected differentially genes 

for class prediction in out-of samples situations 

than when the entire available genes in the data 

were used. This result shows that the proposed 

method is more parsimonious at optimizing 

feature selection for good response class 

prediction than the traditional SVM method. 
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