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Introduction: Parkinson’s disease is a complex, progressive neurodegenerative disorder known to negatively 
impair patient gait. Therefore, with gait and vertical ground reaction force data, an association can be made 
between the data and Parkinson’s disease. 
Methods: Data from 146 participants; 93 with Parkinson’s disease and 73 without Parkinson’s disease was 
obtained from a PhysioNet database for use in this article. A Fourier Analysis and several support vector 
machine learning models were computed in MATLAB to classify whether an individual had Parkinson’s 
disease.
Results: From the Fourier analysis, it was determined that a statistically significant difference was present 
between the vertical ground reaction force data of individuals with and without Parkinson’s disease. 
Additionally, it was found that a Minimum Classification Error Optimized SVM machine learning model 
using Bayesian statistics was able to classify individuals with Parkinson’s disease using vertical ground 
reaction force data at an accuracy of 67.1%, and sensitivity of 80.43%. 
Conclusion: Therefore, it can be determined that vertical ground reaction force can predict Parkinson’s 
Disease with considerable accuracy which could be improved with an increased number of participants.

ARTICLE INFO ABSTRACT

Received  
Revised    
Accepted  
Published

19.06.2024
13.07.2024
11.08.2024
09.09.2024

Key words:
Fourier analysis;
Machine learning;
Support vector machine 
(SVM);
Frequency analysis;
Power spectrum analysis;
Biomedical signals

327-341

Introduction

Parkinson’s Disease

Parkinson’s disease (PD) is a complex, 
progressive neurodegenerative disorder known 
to impact movement in patients.1 PD patients 
usually experience a myriad of symp-toms that 
change over time, including tremors, postural 
instability, ataxia, disequilibri-um, and 

bradykinesia.1-3 PD is one of the most common 
neurological disorders globally, with an 
estimated prevalence of 1% of the population 
over 60 years old, and it is expected to increase 
as the global population ages.1 According to 
the World Health Organization, around 10 
million people worldwide are currently living 
with PD, with significant numbers in both 
developed and developing countries.2 In many 
re-gions, the disease burden is expected to 
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rise by more than 50% in the next two dec-
ades due to demographic shifts.1, 3 Alongside 
the characteristic movement impair-ments, 
PD patients often experience associated 
non-motor symptoms related to depres-
sion, psychosis, behavioural changes, and 
cognitive impairments.2-3 One prevalent non-
motor cognitive complication is Parkinson’s 
disease dementia; a significant decline in 
cognitive ability, specifically memory and 
thinking, in individuals living with PD.2-3 In 
fact, the Movement Disorder Society (MDS) 
estimates that 30% to 40% of PD patients live 
with Parkinson’s disease dementia, and 83% 
of patients with PD will ultimately de-velop 
dementia within their lifetime.2

PD arises primarily due to the reduction 
of neurons that produce dopamine (dopa-
minergic neurons) within the substantia nigra; 
a basal ganglia structure within the midbrain.1-2 
Dopamine is an important neurotransmitter 
that is involved in initiating and inhibiting 
movement; low levels of dopamine can cause 
abnormal brain activity and ultimately lead to 
impaired movement.2  There is no exact cause for 
the reduced number of dopaminergic neurons, 
though both genetic and environmental factors 
have been suggested as potential contributors.3 
Genetic mutations and environmen-tal triggers 
such as toxin exposure are potentially involved, 
however, in the majority of PD patients, the 
cause is unknown.1 

Gait Disorders in Parkinson’s Disease

Gait impairment manifests in the majority of 
PD patients, eventually progressing to a to-
tal loss of mobility.4 Patients with PD tend to 
have altered cadence and stride length when 
walking, in comparison to healthy subjects, 

resulting in rhythmic inconsistencies.4 Initially, 
patients usually present with rigid, slow & 
small-stepped walking patterns, commonly 
referred to as freezing & shuffling gait.4-5 
Many patients also experience festinations, 
which lead to a very inefficient gait rhythm.4 
Due to their altered gait patterns, PD patients 
tend to have diminished multi-tasking abilities, 
specifically be-cause their lack of attention 
and disequilibrium can provoke falls.4 These 
disturb-ances can significantly contribute 
towards disability, cognitive impairments, 
psychoso-cial distress, and ultimately a 
lower quality of life, especially as the disease 
progresses.4

Importance of Models

Biomedical models, particularly those 
utilizing advanced data analysis methods, 
offer a powerful approach to understanding 
and predicting the progression of PD. In recent 
years, the use of biomechanical data, such as 
vertical ground reaction forces (VGRF), has 
gained attention for its potential to predict 
disease severity and progression.5 VGRF 
data can provide valuable insights into the 
patient's gait dynamics, offering a non-
invasive and quantitative method for assessing 
motor function.5 However, while VGRF data 
has been utilized in various clinical settings, 
its full potential in modeling PD remains 
underexplored.5

This study aims to address this gap by using 
computational modelling that incorporates 
VGRF data to predict whether an individual 
has PD. By using mathematics and ma-
chine learning techniques, this research 
seeks to identify key biomarkers in gait that 
correlate with PD, offering a novel approach 
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to early detection and monitoring. The in-
novation of this work lies in the integration 
of biomechanical data with predictive mod-
eling, potentially leading to more accurate and 
individualized diagnostic tools for PD, which 
could significantly improve patient outcomes 
and management strategies.
 
Methods

Dataset

The PhysioNet database was used within this 
analysis to obtain gait measurements using 
VGRF (Vertical Ground Reaction Force) 
from healthy individuals and individuals with 
PD. Data was collected from 93 patients with 
idiopathic PD, and 73 healthy subjects which 
are to be used as controls.6 VGRF was measured 
using 16 load sensors (8 on each foot) placed 
at the points seen in Figure 1.7 These sensors 
were sampled at 100 Hz and quantified the 
force applied (Newtons) by the pa-tient while 
walking.6 Trials were approximately 2 minutes 
in length and took place on level ground in 
order to reduce external influences on gait 
rhythmicity.6 With the trials, there were no set 

requirements re-garding the distance travelled, 
nor were these parameters provided. This may 
influence the gait-specific spatiotemporal 
features that could be ob-tained from the 
VGRF data.
This dataset is valid for helping to treat the 
disease because it quantifies the difference in 
rhythmic gait patterns between PD patients 
and healthy controls. This allows for the study 
of stride dynamics and variability between 
groups under usual walking conditions. 
Additionally, variability in gait patterns can 
be used to measure disease severity, and help 
clinicians determine the best route of action 
when it comes to medications and surgical 
therapies.
Data was collected from 93 patients with PD, 
and 73 healthy controls via load sensors which 
output the VGRF at an instantaneous point in 
time. The participants performed gait exercises 
for approximately two minutes. However, 
upon cleaning the dataset, it was noted that 
there were encoding issues with two of the 
participant data files (1 PD patient data file 
and 1 control data file). Therefore, these files 
were excluded from the dataset used within 
this analysis. Thus, the resultant dataset had 
92 patients with VGRF data representative of 
Parkinsonian gait and 72 individuals with data 
representative of normal gait.
Using this dataset, a Fourier Analysis was 
performed such that the frequency components 
within the VGRF signals can be analyzed 
for both PD patients and control subjects. In 
addition to this, a Support Vector Machine 
model was developed and trained such that 
VGRF data can be used to determine whether 
an individual has Parkinson’s Disease.
VGRF data in itself is low frequency data, with 
15 Hz being the maximum frequency used in Figure 1. Location of VGRF sensors under each foot (7)
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research.8 However, most research studies 
analyze between 0.5 to 8 Hz as this passband 
encompasses all of the VGRF data typically 
seen in healthy and PD gait trials.9 Based on 
this information, a passband of 0.5 Hz to 15 Hz 
was chosen for this analysis. This frequency 
range removes DC offset (0 Hz), Power Line 
Frequency (60 Hz), and other high frequency 
noise. Using a Butterworth Bandpass filter, the 
VGRF signal was filtered. Using the filtered 
VGRF data, a Fourier Analysis and a Machine 
Learning Model were both used to model the 
data.

Fourier Analysis Model Generation

The Fourier Analysis was used to analyze the 
frequency components and the power within 
the VGRF signals for each of the load sensors 
for both the control subjects and patients with 
PD. With this analysis, a set of 36 control 
subjects and 46 PD patients were used.
From literature it has been observed that 
the rigidity and “freezing” typically seen in 
Parkinsonian gait results in high frequency 
components (3 to 8 Hz) within the signal 
(10). These components were reported to be 
primarily apparent when participants were 
standing in place involuntarily, a common 
symptom seen in PD patients termed freezing 
of gait (FOG).10 To identify FOG using the 
power spectra of VGRF data, the VGRF signal 
was characterized into two bands: Locomotor 
band & Freeze band.10 The locomotor band 
consists of low frequency signals between 0.5 
to 3 Hz and is representative of the frequency 
seen in normal gait.10 The freeze band contains 
high frequency signals between 3 to 8 Hz and 
is representative of freezing of gait.10

The resulting Fourier analysis was performed 

in MATLAB via a fast fourier transform (fft) to 
generate the amplitude spectrum of the VGRF 
signal. The following equation was used with 
the amplitude spectra to determine the Power 
Spectral Density estimates of the signal.

( )
( )( ) 2
 Y

PSD
L
ω

ω =

This equation uses the theory behind a 
periodogram of an array of length L to 
determine the power spectral estimates. 
This equation re-sulted in the generation of 
a power spectral sequence with a frequency 
range fr  om -25 to 25 Hz. The power spectral 
sequences were aver-aged so that trends and 
observations could be visually made between 
the conditions. It is expected that patients with 
Parkinson’s Disease will exhibit a peak in the 
power spectrum at a higher frequency when 
com-pared to the healthy subjects, primarily 
due to the high frequency com-ponents arising 
from characteristic Parkinsonian gait.
In order to further investigate the differences 
between the low fre-quency and high frequency 
bands, the band power in the locomotor (0.5 
to 3 Hz) and the freeze band (3 to 8 Hz) was 
calculated. The band power for both of these 
bands were calculated for each of the 16 
sensors for both the control and PD group. 
It is expected that patients with Parkin-son’s 
disease would exhibit a larger band power 
at high frequencies compared to the control 
group based on their freezing of gait.

Machine Learning Model Generation

Given that specific categories for the 
classification algorithm were al-ready 
established (PD or Healthy), a supervised 
learning model was ap-propriate for this 
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analysis.

Support Vector Machines

Support Vector Machines (SVMs) are a 
supervised machine learning al-gorithm 
mainly used for classification. An SVM 
essentially represents different classifications 
in a multidimensional space, where the object 
is placed within decision boundaries based 
on how the model is trained. SVMs use an 
iterative approach so that error is minimized, 
maximizing accuracy.
For this analysis, an SVM was used to predict 
whether an individual has PD based on their 
VGRF data.  To improve the accuracy of the 
model, it was trained and tested on two different 
datasets. Both da-tasets contain VGRF data for 
46 patients with PD, and 36 healthy con-trols.
The data from each participant was iterated 
through to determine the average swing time 
for each foot. Swing time is defined as the time 
in which the analyzed foot is not in contact with 
the ground during gait tri-als. Swing time is an 
important spatiotemporal feature within gait 
studies, which have been previously included 
as a feature in some machine learning models 
when predicting the incidence of PD.7 Within 
this analysis, the duration of all the swing 
times for a specific participant for a specific 
sensor were taken and averaged to determine 
the average swing time during a trial.
Following the swing time calculation, the 
low and high frequency band power reported 
within the VGRF signal was calculated from 
each individual power spectrum.
Both the average swing time for an individual, 
along with their low and high frequency band 
power were used as features within the ML 
model. The model compared its predictions 

to the initial classification la-bels during the 
training and testing phase, and optimized its 
algorithm to decrease the classification error.

Proposed Models

The training and testing datasets were used 
to develop and validate three different SVM 
models, each model was developed using 
different parameters, and different optimization 
strategies.
The first SVM model was a Quadratic SVM 
(Quadratic Kernel) as it resulted in the highest 
accuracy and minimum classification error 
com-pared to a Linear SVM (Linear Kernel), 
Cubic SVM (Cubic Kernel), Fine Gaussian 
SVM, Medium Gaussian SVM, & Coarse 
Gaussian SVM (Gaussian / RBF Kernel with 
coarse distinctions). 
The second model used Bayesian optimization 
to minimize the clas-sification error between 
predicted and actual results. Specifically, 
Bayesian optimization is used to set the 
hyperparameters including the kernel function, 
scale, and box constraint level. To do this, 
an expected improvement per second plus 
acquisition function was used to evalu-ate the 
”goodness” of a point based on its classification 
over the course of 30 iterations. The model 
was configured based on the hyperparame-ters 
that result in the least amount of classification 
error.
The third model uses the framework developed 
by the second model, except that it included a 
Principal Component Analysis (PCA).
All three of these models were initially trained 
on the training dataset and were then validated 
using the testing dataset. These models output 
their respective confusion matrices and ROC 
curves, which were ana-lyzed to determine 
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their effectiveness.

Fourier Model Analysis

For the Fourier Analysis, an initial Jarque-
Bera test was performed in MATLAB which 
determined that the average power spectrum 
data for the control and PD subjects did not 
come from a normal distribution. Table 1 
displays the results, with 0 representing nor-
mality and 1 representing that the data is not 
normal.
Given that the power spectral data is not 
normal, a Mann-Whitney U test was per-
formed to determine whether there were 
significant differences between the control and 
PD subjects. Additionally, an averaged power 
spectral sequence was created for each of the 16 
VGRF sensors for both control and PD subjects.
For the Mann-Whitney U test, the following 
assumptions were made:
•	The	 VGRF	 data	 is	 independent	 and	
continuous
•	The	participants	used	to	collect	VGRF	data	
from were randomly selected from a stratified 
population
•	The	data	is	not	normal

Machine Learning Model Analysis

For the Machine Learning Models, two datasets 
were created as previously mentioned: Training 
Dataset (82 individuals, 36 Control and 46 

PD) & Testing Dataset (82 in-dividuals, 36 
Control and 46 PD). Both datasets consisted of 
numerous individuals with a stratified division 
between their respective classes based on the 
data obtained from the PhysioNet database. 
The training dataset was used to train the 
model and allow it to optimize its parameters, 
while the testing dataset was used to validate 
the model’s efficacy.
Each of the three models were trained and 
tested separately, outputting a confusion 
matrix, and an ROC curve. These served as 
the statistical analysis of the model, and it 
provided information on the model’s ability to 
differentiate between control and PD subjects. 
It is important to note that a diagnosis of PD 
was set to as positive for the confusion matrix 
and the ROC curve. 
The confusion matrix was used to determine 
the sensitivity and specificity of the model, 
while the ROC curve was used to evaluate the 
performance of the classifier. 
 
Results

Fourier Analysis Results

After following the aforementioned Fourier 
Analysis methodology, the average power 
spectral sequences were plotted against 
frequency and it was visually determined that 
the PD group seems to exhibit increased power 
at a higher frequency compared to the control 

Table 1. Jarque-Bera Test Results for Averaged Power Spectral Data
Group VGRF 1 VGRF 2 VGRF 3 VGRF 4 VGRF 5 VGRF 6 VGRF 7 VGRF 8

Control Left Foot 1 1 1 1 1 1 1 1
Control Right Foot 1 1 1 1 1 1 1 1
PD Left Foot 1 1 1 1 1 1 1 1
PD Right Foot 1 1 1 1 1 1 1 1
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group.
In order to investigate the higher frequency 
differences further, a bar plot depicting the 
band power in the locomotor (0.5 to 3 Hz) and 
the freeze band (3 to 8 Hz) was calculated as 
seen in Figure 2a & 2b. From these figures, 
it can be determined that there is a significant 
amount of variability for the magnitude of the 
low frequency components between VGRF 
sensors in control and PD participants.
In order to test whether differences exist 
between the power spectral data for each 
sensor, a Mann-Whitney U test was performed. 
The p-values for each of the comparisons done 
by the Mann-Whitney U test can be seen in 
Table 2.
From the Mann-Whitney U test, it can be 
concluded that there was a statistically 
significant difference between the populations 

for most of the sensors. However, it appears 
that no significant difference was ob-served 
for VGRF 3 on the Left Foot and VGRF 8 on 
both feet.

Machine Learning Results

With respect to the SVM models, the confusion 
matrices and ROC curves for the training and 
testing phase can be found in Figures 3 to 8. 
From the ROC curves, it can be determined that 
the performance of the models in classifying 
PD using VGRF data was fairly similar. They 
all had an AUC of approximately 0.71, which 
indicates that the model is fair in classifying 
VGRF data, but its performance can be 
improved. A summary of the SVM model 
results can be found in Table 3.
From the table, it can be determined that 

Figure 2. Average Band Power for all individuals (Control and PD) for each of the sensors on the left (2a) and right 
foot (2b) separated by high and low frequency components.
 A) Average Band Power for all individuals for each of the sensors on the left foot separated by high and low frequency 
components.
 B) Average Band Power for all individuals for each of the sensors on the right foot separated by high and low frequency 
components.
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Figure 3. Results of Machine Learning Model 1 against the training dataset, including the Confusion Matrix (3a) and 
the ROC curve (3b)
A) Confusion Matrix of Machine Learning Model 1 with the Training Dataset
B) ROC Curve including the calculated AUC using Machine Learning Model 1 with the Training Dataset

Figure 4. Results of Machine Learning Model 2 against the training dataset, including the Confusion Matrix (4a) and 
the ROC curve (4b) 
A) Confusion Matrix of Machine Learning Model 2 with the Training Dataset
B) ROC Curve including the calculated AUC using Machine Learning Model 2 with the Training Dataset
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Table 2. Mann-Whitney U Test Results for Averaged Power Spectral Data

Group VGRF 1 VGRF 2 VGRF 3 VGRF 4 VGRF 5 VGRF 6 VGRF 7 VGRF 8

Left Foot 6e-43 2e-24 0.7020 2e-23 2e-04 1e-07 5e-04 0.1309

Right Foot 1e-32 2e-24 0.0012 4e-16 1e-08 6e-08 0.0057 0.4567

Table 3. Summary of Machine Learning Model Results

Models
Accuracy Sensitivity Specificity AUC

Training Testing Training Testing Training Testing Training Testing

Model 1 76.8% 67.1% 80.43% 55.56% 72.22% 76.09% 0.76 0.71

Model 2 73.2% 67.1% 82.61% 80.43% 61.11% 50.00% 0.78 0.73

Model 3 69.5% 63.4% 80.43% 71.74% 55.56% 52.78% 0.67 0.70

Figure 5. Results of Machine Learning Model 3 against the training dataset, including the Confusion Matrix (5a) and 
the ROC curve (5b)
A) Confusion Matrix of Machine Learning Model 3 with the Training Dataset
B) ROC Curve including the calculated AUC using Machine Learning Model 3 with the Training Dataset
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Figure 6. Results of Machine Learning Model 1 against the testing dataset, including the Confusion Matrix (6a) and 
the ROC curve (6b) 
A) Confusion Matrix of Machine Learning Model 1 with the Testing Dataset
B) ROC Curve including the calculated AUC using Machine Learning Model 1 with the Testing Dataset

Figure 7. Results of Machine Learning Model 2 against the testing dataset, including the Confusion Matrix (7a) and 
the ROC curve (7b)
A) Confusion Matrix of Machine Learning Model 2 with the Testing Dataset
B) ROC Curve including the calculated AUC using Machine Learning Model 2 with the Testing Dataset
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Figure 8. Results of Machine Learning Model 3 against the testing dataset, including the Confusion Matrix (8a) and 
the ROC curve (8b)
A) Confusion Matrix of Machine Learning Model 3 with the Testing Dataset
B) ROC Curve including the calculated AUC using Machine Learning Model 3 with the Testing Dataset

Model 1 (Quadratic SVM) yields the best 
accuracy and specificity post-training and post-
validation. Additionally, Model 2 (Optimized 
SVM) yields the best sensitivity post-training 
and post-validation. Lastly, it can be seen that 
Model 2 has the best AUC using the training 
and testing dataset, thereby indicating it has 
the best performance when classifying PD 

subjects using VGRF data. However, when 
determining if the differences in AUC were 
statistically significant via the Hanley and 
McNeil approximation, it was determined that 
none of the models were significantly different 
from each other.12 This can be seen in Tables 
4-6.

Table 4. Area Under Curve comparisons between Training and Testing Models

Models Training Testing P Values

Model 1 0.76 0.71 0.258

Model 2 0.78 0.73 0.251

Model 3 0.67 0.70 0.358

Table 5. Area Under Curve comparisons between Training Model Types

Model Comparisons AUC #1 AUC #2 P Values
Model 1 ↔	Model	2 0.76 0.78 0.391

Model 1 ↔	Model	3 0.76 0.67 0.127

Model 2 ↔	Model	3 0.78 0.67 0.078
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Table 6. Area Under Curve comparisons between Testing Model Types

Model Comparisons AUC #1 AUC #2 P Values

Model 1 ↔	Model	2 0.71 0.73 0.400

Model 1 ↔	Model	3 0.71 0.70 0.450

Model 2 ↔	Model	3 0.73 0.70 0.353

Discussion

This study aimed to explore the potential of 
using Vertical Ground Reac-tion Force (VGRF) 
data in both Fourier analysis and machine 
learning models for predicting Parkinson’s 
disease (PD) based on gait abnormali-ties. The 
primary findings include: 

1) Fourier analysis revealed significant 
differences in low and high-frequency power 
between PD and control subjects, 
2) machine learning models successfully 
classified PD and control sub-jects based on 
gait data, although sensitivity varied across 
models. 

Fourier Analysis Discussion

The Fourier analysis demonstrated significant 
differences in the low and high-frequency 
power spectra between PD and control groups, 
though some inconsistencies in trends were 
noted. Initially, it was hypothesized that 
control subjects would exhibit higher low-
frequency power than PD subjects, but this 
was not consistently observed across all 
sensors. Spe-cifically, while VGRF 1 (heel) in 
control subjects showed higher low-frequency 
power, this was not the case for PD subjects, 
where VGRF 1 showed similar power to 
VGRF 7 (first metatarsal) and VGRF 4 (lateral 
arch). This variation could be attributed to the 
rigidity of PD gait, where pressure distribution 

is more uniform across the foot, contrary to the 
more localized pressure in healthy subjects. 
This aligns with previous studies suggesting 
that PD patients often demonstrate altered 
gait pat-terns with reduced variability in foot 
pressure distribution, potentially due to motor 
dysfunction and rigidity.11 A figure of the 
foot pressure distri-bution in normal, healthy 
patients can be seen in Figure 9.11

Regarding the high-frequency components, 
we initially hypothesized that PD subjects 
would show increased high-frequency 
activity due to freezing of gait, a common 
feature in PD. However, no clear differences 
were observed between the two groups. One 
possible explanation for this discrepancy is 
experimental limitations, such as participant 
pauses or rotational movements during the 
trials, which may have influenced the high-
frequency data. This suggests that while high-
frequency com-ponents may be indicative of 
PD, further refinement in experimental de-sign, 
particularly addressing gait interruptions, is 
needed for clearer dif-ferentiation. This finding 
contrasts with some studies that have observed 
elevated high-frequency components in PD 
patients during gait analysis.11 Thus, further 
research should explore the specific impact of 
motor fluctuations on high-frequency data.
In terms of statistical analysis, the Mann-
Whitney U test confirmed significant 
differences in band power between control 
and PD subjects for most sensors, reinforcing 
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Figure 9. Foot pressure distribution patterns observed during walking. A. 3D distribution of pressure for one healthy 
subject. B. The nine anatomical areas superimposed on the sole of a foot (MC = medial calcaneus, LC = lateral calca-
neus, MA = medial arch, LA = lateral arch, MT1 = first metatarsal, 3 = second and third metatarsal, 4 = fourth and fifth 
metatarsal, H = hallux, and T = toes)

the notion that PD gait disturbances mani-
fest through altered pressure distribution. 
However, exceptions were noted for VGRF 3 
(medial arch) and VGRF 8 (toes), which did 
not show as much variation. It is hypothesized 
that these areas may not be as in-fluenced by 
rigidity as other regions of the foot, suggesting 
that rigidity impacts pressure distribution 
more in the rearfoot and midfoot than in the 
forefoot. Additionally, the use of average 
power spectral estimates in the Fourier analysis 
may have introduced errors, and individual 
spectral estimates may offer more precise 
insights into group differences. These results 
highlight the need for careful consideration 
of methodological choices when analyzing 
VGRF data.

Machine Learning Discussion

The machine learning models demonstrated 
fair classification per-formance, with an area 
under the curve (AUC) of approximately 
0.71 for all models. This suggests that the 
models were able to differentiate be-tween 
PD and control subjects based on gait data 
with moderate accu-racy. Notably, there was 
no significant overfitting, as evidenced by 
simi-lar performance in both the training and 
testing phases of the models. However, the 
sensitivity of Model 1 dropped by about 25% 
between training and testing, which could be 
due to suboptimal model parame-ters or the 
use of an inappropriate kernel for the data. 
This finding un-derscores the importance of 
model optimization and the potential benefit 
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of exploring alternative kernels to improve 
sensitivity.
Interestingly, Model 3, which incorporated 
Principal Component Analysis (PCA) for 
feature reduction, performed worse than 
Model 2, which used all features without 
dimensionality reduction. This aligns with 
previous research indicating that feature 
selection or reduction methods like PCA can 
sometimes result in the loss of important infor-
mation, thereby impairing model performance.8 
Therefore, it is con-cluded that all features used 
in Model 2 were relevant for PD classifica-tion 
and should be considered in future models. 
However, given that no statistically significant 
differences were observed between the 
models, further research must be conducted to 
determine feature selection and optimization 
algorithms that can be used to improve the 
model’s perfor-mance in PD classification.

Limitations and Future Directions

Several limitations of this study should be 
addressed in future re-search. First, the sample 
size in both the Fourier analysis and machine 
learning components was limited, which 
may have restricted the statisti-cal power 
and generalizability of the findings. A larger 
cohort, including a broader range of PD stages, 
would improve the robustness and clini-
cal applicability of the results. Second, the 
experimental design for the Fourier analysis 
could be refined, particularly by controlling for 
potential interruptions in gait such as pauses or 
rotational movements that might affect high-
frequency data. Lastly, the machine learning 
models would benefit from the inclusion of 
more gait features, particularly those related to 
spatial aspects of walking, to further enhance 

classification accuracy.

Conclusion

In conclusion, this study provides valuable 
insights into the use of VGRF data for 
predicting PD and highlights the potential of 
Fourier analysis and machine learning models 
as tools for PD de-tection. The significant 
differences observed in low-frequency 
components of VGRF data be-tween PD and 
control subjects emphasize the importance 
of gait abnormalities as biomarkers for PD. 
Furthermore, the successful application of 
machine learning models demonstrates the 
potential of automated gait analysis for PD 
classification. However, further refinement in 
both data collection and model optimization is 
required to improve the accuracy and clinical 
utility of these methods. The integration of 
additional features and the use of larger, more 
diverse da-tasets will be key to advancing these 
techniques for early detection and monitoring 
of Parkin-son’s disease.
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