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Introduction: MRI-based texture features in adipocytic tumors to serve as non-invasive predictive biomarkers 
that can provide precise outcomes for decision-making. Power of adaptive weight and the initial weight for 
the adaptive Lasso is one of the important parameters. This study aimed to compare the impact of the initial 
weight together with the power of adaptive weight for this adaptive Lasso under high-dimensional sparse data 
with multicollinearity.  
Methods: All independent variables in the Monte Carlo simulation were generated using the Toeplitz 
correlation structure. Performance of the initial weight together with the power of adaptive weight on penalized 
approaches was evaluated using the mean of the predicted mean squared error (MPMSE) for simulation 
study and the area under the receiver operator characteristic curve (AUC), precision, recall, F1-score, and the 
classification accuracy of models for real-data applications. 
Results: The simulation study showed that the smallest MPMSE value was obtained from the square root 
of the adaptive Lasso together with the initial weight using Lasso. Additionally, the results of this approach 
on the real-data application achieved high performance to distinguish the intramuscular lipomas from well-
differentiated liposarcomas: the values of AUC, accuracy, precision, recall, and F1-score for the model based 
on penalized logistic regression classifier were 0.935, 0.928, 0.919, 0.921, and 0.925 respectively, and 0.946, 
0.935, 0.932, 0.934, and 0.930 respectively for the model based on support vector machine classifier. Both the 
simulation study and the real-data application presented that the square root of the adaptive Lasso together with 
the initial weight using Lasso was the best option under high-dimensional sparse data with multicollinearity.
Conclusion: Our finding showed that the power of adaptive weight on penalty function and the initial 
weight can affect certain the classification accuracy of machine-learning model. In practice, if choosing these 
parameters are appropriate, it produces models that have good performance. 
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Introduction

Advances in technology have enabled 
computers to effectively store large quantities 

of the data. Consequently, we desire tools 
capable of extracting valuable information 
from massive data sets. To effective decision-
making, precise predictive models are essential. 

*.Corresponding Authors:  chandhanarat.c@gmail.com & monthira@mathstat.sci.tu.ac.th
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Logistic regression models are widely applied 
in data analytics1, 2 and machine-learning 
(ML) strategies.3, 4 This model aims to explain 
the relationships between independent and 
outcome variables and predicts future value 
of the outcome variable. For example, in 
case where we desire to study the predictive 
features for distinguishing intramuscular (IM) 
lipomas from well-differentiated liposarcomas 
(WDLSs). IM lipomas and WDLSs are benign 
adipocytic tumors and adipocytic malignancies, 
respectively. Identifying IM lipomas that are 
larger than 5 cm, deep-seated, and symptomatic 
may be difficult because of their resemblance 
to WDLSs. One of most useful diagnostic tools 
for these tumors is magnetic resonance imaging 
(MRI). Thus, the independent variables of 
interest are MRI-based texture features (these 
features in adipocytic tumors to serve as non-
invasive predictive biomarkers), while the 
outcome variable would simply be coded as 
1 (WDLSs) or 0 (IM lipomas). The statistical 
method known as binary logistic regression 
is the one that is commonly utilized in such 
research. Regarding binary logistic regression 
coefficients estimation, maximum likelihood 
estimation (MLE) was regarded as the classical 
approach. However, this approach is unsuitable 
when the data of independent variables are 
high collinear (also called multicollinearity) 
and small sample size.5-7 A critical problem that 
arises in cancer research is a limited sample 
size, while a data set with a large number of 
independent variables relative to the sample 
size (also called high-dimensional data), 
which can lead to multicollinearity problem. 
Additionally, the data set may be most of the 
entries don’t contain significant information, 
which is called “sparse” data.8 Therefore, 
high-dimensional sparse data is a challenge in 

model construction as it can cause overfitting.9 

Another issue is multicollinearity10, 
which can cause the variance of logistic 
regression coefficient estimators to inflate.5, 6 

Consequently, the MLE utilized for estimating 
logistic regression coefficients is unstable for 
building a classification model.11 
In order to remedy the two above problems, 
penalized approaches can be employed in 
the logistic regression. These approaches can 
reduce the variance and help alleviate model 
overfitting.12, 13 Popular penalty methods are 
ridge regression, Lasso, and elastic net.14-

16 These methods are one of techniques 
that are widely used in machine-learning 
study.14-16 Regarding ridge regression, this 
penalty penalizes the model by shrinking the 
coefficients toward zero, which can reduce 
the variance and solve the multicollinearity 
problem. For Lasso penalty, this method avoids 
the disadvantage of ridge regression using the 
tuning parameter controls the shrinkage of the 
coefficients, which has the effect of shrinking 
some coefficient estimates to exactly zero. 
Consequently, this method can remedy the 
multicollinearity and help alleviate model 
overfitting. Elastic net combines the properties 
of ridge regression and Lasso using two 
tuning parameters to control the shrinkage of 
coefficients, which has superior performance 
to Lasso. Although these methods are effective 
in solving all above problems, they have some 
disadvantages. For this reason, several earlier 
studies devoted their attention to devising an 
adaptive weight for penalized methods.17, 18 For 
example, in 2006, Zou17 proposed adaptive 
Lasso, which enjoyed oracle properties and 
led to stable estimation. In 2009, Zou and 
Zhang proposed an adaptive elastic net18; it has 
oracle properties and superior performance to 
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elastic net. In 2021, Araveeporn19 compared 
the higher-order of the adaptive Lasso and 
adaptive elastic net methods for classification 
on high-dimensional data and reported that 
the higher-order of the adaptive Lasso method 
outperformed on large dispersion, but the 
higher-order of the adaptive elastic net method 
was preferred with small dispersion. Recently, 
Sudjai et al20 compared the performances of 
the power of the adaptive Lasso and adaptive 
elastic net methods under high-dimensional 
sparse data with multicollinearity. Their results 
showed that the square root of the adaptive 
elastic net performed best. However, there are 
no studies that have compared how penalized 
methods perform in high-dimensional sparse 
data with multicollinearity, emphasizing 
the initial weight together with the power 
of adaptive weight for the adaptive Lasso. 
Choosing appropriate the initial weight and 
the power of adaptive weight maybe help 
to improved efficacy of variable selection 
procedure. In our case study, if adjusting 
the initial weight together with the power of 
adaptive weight could be help to improve the 
efficacy of variable selection procedure, the 
adaptive Lasso can exactly extract significant 
information and subsequently produce the 
classification model that has the potential for 
differentiating benign adipocytic tumors from 
adipocytic malignancies. 
Therefore, we examined whether adjusting 
the initial weight and the power of adaptive 
weight for the adaptive Lasso could be help 
to improve the efficacy of variable selection 
procedure. The primary objective of this study 
was to compare the performances of the initial 
weight together with the power of adaptive 
weight for the adaptive Lasso under high-
dimensional sparse data with multicollinearity 

in a simulation study. Additionally, the 
classification performance of these approaches 
was compared on an adipocytic tumors data 
application. 

Materials and Methods 

Logistic regression model

The logistic regression is one of most supervised 
ML algorithms employed for classification 
tasks when the aim is to predict the probability 
that an instance belongs to a given class or not. 
In the cases of the binary outcome variable, a 
dependent variable (Yi) would simply be coded 
as 1 (positive class) or 0 (negative class),which 
has a Bernoulli distribution ( ( )i iY Bernoulli π∼ )
with the parameter epx( ) / 1 exp( )i i ix xπ β β = + 

 

 

.
( )0 1 2, , ,...,

T

pβ β β β β=


 presents a vector 
composed of logistic regression coefficients 
and 1 21, , ,...,i i i ipx x x x =  



 denotes a vector of 
independent variables for the ith observation 
where  1,2,3,...,i n= . n is the sample size and 
P is the number of independent variables. 
Therefore, the binary logistic regression model 
is as follows:

,  1, 2,3,...,i i iY i nπ ε= + =                                (1)

where iε  denotes the random error, which 
is assumed to follow a distribution with zero 
mean and variance of  ( )1i iπ π− . 
The transformation of iπ  is a central of logistic 
regression (known as the logit function), which 
can be written as follows:
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1,2,3,...,j p= .
The log-likelihood function for a set of 
observations ( ),i iy x



 can be written as: 

                                                      .             (3)
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We can use the MLE (standard approach) to 
determine the estimated parameters of equation 
(3), which is as follows:

                                                                      (4)
0

1

0
1

ˆ arg max
ln 1 exp

p

i ij j
j

MLE p

ij j
j

y x

x
β

β β

β

β β

=

=

  
+  

  
=     − + +       

∑

∑



where ˆ
MLEβ


 represents a ( )1 1p + ×  vector of the 
maximum likelihood estimators. Nevertheless, 
this method has some limitation with regards 
to multicollinearity and high-dimensional data. 
Especially, multicollinearity is a problem that 
affects the logistic regression models in which 
two or more independent variables (also called 
predictor variables) are high correlated. When 
this arises, the maximum likelihood estimators 
of the logistic regression coefficients trends 
to be very imprecise, that is, it has inflated 
variance, even if the sample size is sufficiently 
large. Ignoring this problem can cause in 
unreliable estimated coefficients (i.e., the 
estimates very sensitive to minor changes in 
the model or also called unstable), making it 
difficult to determine the actual effect of each 
predictor and could lead to misinterpretations 
of the significance of predictors. Therefore, 
dealing multicollineariy is necessary to ensure 
that the estimated coefficients reflect the 
actual relationship between the predictor and 

outcome variables. Thus, the penalized logistic 
regression is used as an alternative to the MLE. 
From equation (3), we can be written in a form 
of penalized approach as follows: 

*( )   ( )  ( )Pλβ β β= − + 

  

                     (5)

where ( )Pλ β


 denotes the penalty function and   
λ  represents the tuning parameter.

Penalized logistic regression model

In cancer research, an overfitted model is highly 
accurate when predicting patients from its own 
data set, but has poor predictive performance 
when applied to patients in other data sets. 
Thus, shrinkage term in the penalized logistic 
regression model is designed to prevent extreme 
values of logistic regression coefficients, 
reducing the risk of overfitting in model 
development. Additionally, it is advantageous 
when the sample size is small relative to the 
number of predictors and multicollinearity 
arises. The penalized logistic regression differs 
from the MLE by incorporating a shrinkage 
term into the model. This model is given below. 
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                                                                    (6)

where ( )Pλ β


 is term of a penalty function. λ  
represents a tuning parameter. If λ  equals zero,   
ˆ ˆ

PLR MLEβ β=
 

. For selecting the optimal value of 
λ , cross-validation is commonly utilized to 
evaluate the value of this parameter. 
Shrinkage penalty is popular approach to 
alleviate the overfitting phenomenon by 
shrinking the logistic regression coefficients 
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toward zero and moves extreme predicted 
values toward the average risk, leading to 
more accurate predictions when the model 
is applied in new patients. Different types of 
shrinkage penalties depending on the form 
of penalty function. Presently, the Lasso and 
adaptive Lasso are popular methods for cancer 
classification,3, 21-23 which are described below.  

Lasso

Lasso was originally designed to alleviate 
the disadvantage of ridge regression (i.e., the 
inability to reduce the number of independent 
variables in the final model). This approach    
proposed by Tibshirani in 1996.15  The 
Lasso coefficient estimates, just like in ridge 
regression, are shrunk towards zero. The Lasso 
penalty ( 1 -norm penalty) is defined by:

1
( )

p
lasso

j
j

Pλ β λ β
=

= ∑


.                                        (7)

Thus, the coefficient estimates using the Lasso 
penalty is defined as follows:
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                                                                    (8)

We use cross-validation strategies to evaluate 
the optimal value of tuning parameter λ. This 
parameter controls the shrinkage of β̂



. 24, 25 

When the tuning parameter is sufficiently large, 
the Lasso penalty will shrink some coefficient 
estimates to exactly zero. This means that 
Lasso has the capability to perform variable 
selection. Consequently, the model derived 
from Lasso is simpler to interpret than that 
from ridge regression.26 Despite being able 
to handle high-dimensional data, Lasso still 

has its limitations. First, if p n , Lasso 
selects at most n independent variables before 
it saturates. Moreover, if a group of variables 
has high correlation, Lasso will choose only 
one variable and doesn’t prioritize which one.16  
Finally, Lasso lacks oracle properties.17, 27

Adaptive Lasso

The lack of oracle properties is a significant 
reason why Lasso may exhibit instability.27 

Thus, in 2006, Zou17 proposed adaptive Lasso 
to overcome this drawback. The principle 
of adaptive Lasso is a different weight for 
parameter β



 in 1 -norm penalty. The adaptive 
Lasso penalty is given below.

1
( )

p
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j j
j

P wλ β λ β
=
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

.                            (9)

Therefore, the estimation of β


using the 
adaptive Lasso penalty can be determined as 
follows:
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                                                                  (10)

where 1 2( , ,..., )T
pw w w w=  represents a vector 

composed of weight vector and ˆ ;  > 0j jw
γ

β γ
−

= . 
γ denotes the power of adaptive weight. 
We can notice that jw  depends on the root 
n-consistent initial values of ˆ

jβ . The initial 
weight can be determined by using the MLE/
ridge regression/Lasso.12, 17 To reduce selection 
bias, this weighted approach assigns smaller 
weights to large coefficients and larger weights 
to small coefficients. Therefore, the adaptive 
Lasso can truly enjoy oracle properties.17 

Apart from the above penalty functions, ridge 
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regression, elastic net, and adaptive elastic 
net are also being increasingly employed 
in cancer research in data sets in which the 
target population is not rare diseases.28-30 
Regarding selecting specific penalty functions, 
we compare the advantages, limitations, and 
suitability of applying each shrinkage penalty 
in the penalized logistic regression model as 
shown in Table 1.   

Monte Carlo simulation

The number of predictors, sample size, and 

degree of correlation for the predictors affect 
classification model accuracy. In this simulation 
study, we focused on two conditions:
(1) High-dimensional sparse data (p > n).8 
Assuming a sparse coefficients, we defined the 
number of significant predictors as q, and q < p 

( ),i iA iBx x x=
  

 with 
( )1 2 3, , ,...,

T q
iA i i i iqx x x x x= ∈


 as well as 

( ) ( ) ( )( )1 2 3, , ,...,
T

p q
iB ipi q i q i qx x x x x −

+ + += ∈


 . 

Thus, ( ), T n p
A BX x x ×= ∈

  

 is the 
matrix of all independent variables 
when ( ),..., T n q

A iA nAx x x ×= ∈
  

 and 

Table 1. Advantages, limitations, and suitability of applying each shrinkage penalty in the penalized logistic regression model.
Penalty function Advantages Limitations Suitability of application 

Ridge - Able to overcome the problem of 
multicollinearity

- Lacks variable selection property - Multicollinearity arises

- Able to deal with low-/high-
dimensional data

- The data sets are low-/high-dimen-
sional. 
- All independent variables relate to 
the outcome variable.

Lasso - Able to handles the multicollinear-
ity problem

- If the number of independent 
variables ( p ) are less than the 
sample size ( n ) and the independent 
variables are high correlated, Lasso is 
dominated by ridge regression 

- The independent variables are low/
medium correlated.

- Lasso is one of the standard sparse 
methods, but it is non-robust. - If p n> , Lasso selects a most n  

variables before it saturates.

- The data are high-dimensional. 

- When independent variables in the 
data set have a high pairwise correla-
tion, Lasso selects only one/a few 
variables from the correlated group, 
regardless of which ones are chosen.  
- Lacks oracle properties

Adaptive Lasso - Performance of the adaptive Lasso 
surpasses that of the Lasso and 
elastic net.

- - The independent variables are highly 
collinearity. 

- The estimators have oracle 
properties

- The data are high-dimensional.

Elastic net - - Lacks oracle properties - Multicollinearity exists.
- The data are high-dimensional.

Adaptive elastic 
net 

- The adaptive elastic net outper-
forms the elastic net.

- - The independent variables are highly 
correlated.

- The estimators have oracle 
properties

- The data are high-dimensional.
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( ) ( ),..., T n p q
B iB nBx x x × −= ∈
  

 .

(2) All independent variables are collinear 
based on the Toeplitz correlation structure, 
which is as following.31

                                                                  (11)
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where k  is a positive integer that represents the 
number of the independent variables. Along 
with, let a value of ρ  range from 0 to 1.
The Monte Carlo simulations were done 
using 50 independent variables ( p ). The 
sample size (n) was set to 30 and 40. We 
generated the dependent variables from the 
Bernoulli distribution with parameter iπ . The 
multivariate normal distribution with a mean of 
zero and covariance ( )(0, )X N ∑∑ 



 was used to 
generate the independent variables. Degree of 
correlation (ρ) equaled 0.1, 0.3, 0.5, 0.75, 0.85, 
and 0.95. The logistic regression coefficients 
were assigned constant values.19, 32 Along with, 
we take a sparse logistic regression parameter 
β


: the proportion of nonzero components equals 
50% or less of the total predictors p. Thus, the 
number of significant predictors ( q ) was set to 
15. 8, 32 After that, the acquisition data was split 
into two subsets: 80% for the learning data set 
and 20% for the testing data set. Performances 
of the penalized methods was assessed using the 
predicted mean square errors (PMSE), which is 
the most popular statistic for regression issues. 
The PMSE is a crucial performance metric for 
quantifies prediction accuracy, which provides 
a measure of how well the model’s predictions 
align with the actual data points. The lower 
value of the PMSE indicates better predictive 

accuracy.33, 34 The evaluation of the PMSE is as 
follows:

2

1

ˆ( )PMSE
n

i i

i

y y
n=

−
=∑                                                                  (12)

where iy  is thi  actual value of the dependent 
variable and ˆiy  were thi  predicted value of the 
dependent variables. The optimal value of the 
tuning parameter (λ ) was determined using 
10-fold cross-validation strategy.12, 16, 25 To 
product a stationary result, our experiment was 
repeated 1000 times. Thus, the MPMSE was 
determined from the mean of 1000 estimates of 
PMSEj.

                                             .                      (13)
1000

1

1MPMSE
1000 j

j
PMSE

=

= ∑

Penalized methods that produced the lowest 
MPMSE were regarded as the most favorable 
choice. Flowchart of the simulation procedure 
is shown in Figure 1.
Moreover, Figure 2 presents the workflow 
diagram of the machine-learning procedure 
for the real-data application. In this section, 
accuracy, recall, precision, F1-score, and the 
area under the receiver operator characteristic 
curve (AUC) were used as performance metrics 
for classification models.33, 34 Each of them has 
values in the interval [0, 1]. The classification 
accuracy of each method was determined as 
following:

Accuracy = TP TN
TP FP FN TN

+
+ + +

                     (14)

when TP, FP, TN, and FN denote true positive, 
false positive, true negative, and false negative, 
respectively (Table 2). Out of all instances, it 
counts how many were correctly classified. 
For recall, we can be determined as follows: 
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Figure 1. Flowchart of simulation procedure
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Table 2. Confusion matrix: Summary of prediction results on a classification task to appraise the performance of a 
machine learning model. 

Predicted
Actual/Gold standard  

Disease (number) Non-disease (number)
Positive (number) True positive (TP) False positive (FP)
Negative (number) False negative (FN) True negative (TN)

Figure 2. Workflow diagram of the machine-learning procedure
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Recall   = TP
TP FN+

.                                   (15)
Recall (also called sensitivity) is the ability of 
a predictive model to yield a positive result for 
a subject that has that disease. When recall is 
low, it denotes that a large number of disease 
cases are not detected.    
Regarding precision and F1-score, precision 
is the proportion of positive predictions that 
were actually correct (also known as positive 
predictive value) and the F1-score is the 
harmonic mean of precision and recall that 
provided a balanced measure of performance). 
They have the formulas as follows:   
Precision   =   TP

TP FP+
                              (16)

and F1-score   = 2 Precision  Recall
Precision  Recall
× ×

+
.    (17)

For AUC, with a value of 1 signifies that the 
ability of a predictive model to always correctly 

classify a randomly presented case (also called 
perfect classification). All of them were the 
most commonly utilized performance metrics 
of binary classification.33           

Results 

Simulation study

Table 3 shows the MPMSE values of each 
penalized method (i.e., Lasso, elastic net, 
adaptive Lasso, and adaptive elastic net). 
With high-dimensional sparse data ( p = 50, 
n = 30 and 40, and for different ρ ), we found 
that the performance of the adaptive Lasso 
depended on the power of the adaptive weight 
(γ ) and the initial weight used. In the case of                                        
ρ  = 0.1, 0.3, and 0.5, the MPMSE values of this 
method using 1ˆ ridge

j jw β
−

=


 were less than those 

Table 3. Mean of the predicted mean square errors (MPMSE) values for the penalized methods when p = 50.  

n ρ LASSO Elastic net Adaptive LASSO Adaptive elastic net

ˆ ridge
j jw

γ
β

−
=



ˆ lasso
j jw

γ
β

−
=



ˆ elasticnet
j jw

γ
β

−
=



0.5γ = 1γ = 2γ = 0.5γ = 1γ = 2γ = 0.5γ = 1γ = 2γ =
30 0.10 0.177 0.180 0.166 0.162* 0.163 0.167 0.169 0.174 0.168 0.171 0.175

0.30 0.177 0.181 0.168 0.165* 0.166 0.168 0.171 0.174 0.171 0.174 0.177

0.50 0.183 0.188 0.173 0.171* 0.172 0.174 0.177 0.182 0.175 0.178 0.182

0.75 0.189 0.192 0.185 0.184 0.185 0.183* 0.184 0.187 0.186 0.188 0.191

0.85 0.192 0.198 0.191 0.191 0.191 0.188* 0.190 0.193 0.191 0.193 0.196

0.95 0.196 0.198 0.195 0.195 0.198 0.192* 0.193 0.196 0.195 0.196 0.198

40 0.10 0.167 0.171 0.159 0.156* 0.157 0.157 0.161 0.165 0.158 0.161 0.166
0.30 0.174 0.174 0.164 0.162* 0.164 0.165 0.167 0.172 0.164 0.167 0.172

0.50 0.175 0.176 0.167 0.166* 0.168 0.168 0.170 0.174 0.167 0.170 0.174

0.75 0.185 0.188 0.182 0.182 0.183 0.178* 0.180 0.184 0.180 0.183 0.186

0.85 0.187 0.191 0.189 0.189 0.192 0.183* 0.186 0.189 0.186 0.188 0.193

0.95 0.194 0.195 0.197 0.199 0.203 0.190* 0.192 0.195 0.193 0.194 0.197
Lasso, Least Absolute Shrinkage and Selection Operator; *The penalized methods providing the lowest MPMSE
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for the other methods. For ρ = 0.75, 0.85, and 
0.95, the inflation of the MPMSE values for 

0.5ˆ lasso
j jw β

−
=



 was the smallest compared with 
the other methods. Additionally, we compared 

the MPMSE values between four different 
approaches when jw



 for the adaptive Lasso 
is equal to 0.05ˆ lasso

jβ
−  and jw



for the adaptive 
elastic net is equal to 0.05ˆ elasticnet

jβ
− (Figure 3). The 

results showed that there was no statistically 

Figure 3. The mean of the predicted mean square errors (MPMSE) values of each penalized approach, which signified the per-
formance of the approaches: A) The simulated data set:  p = 50 and  n = 30; and B) The simulated data set,  p = 50 and   n = 40. 
A lower value of MPMSE represents a better performance. 
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significant difference in MPMSE between 
methods (all P > 0.05 according to the Mann-
Whitney U test).  

Real-data applications

Presently, developments in ML algorithms have 
brought revolutionary changes to diagnostics 
in cancer such as adipocytic tumors. Most 
of the adipocytic tumors are either lipoma 
(benign tumor) and WDLS (malignant tumor), 
which frequently found in clinical practice. 

Distinguishing between IM lipomas that are 
symptomatic, deep-seated, and larger than 5 
cm and WDLSs can be difficult due to their 
similarity. Thus, in our case study, we used 
MRI-based texture features to serve as non-
invasive predictive biomarkers together with 
a machine-learning strategy for differentiating 
IM lipomas from WDLSs. Adipocytic tumors 
data set was obtained from 40 patients, which 
comprised 20 IM lipomas and 20 WDLSs.  
All patients underwent preoperative MRI 
scans including T1-weighted (T1W) sequence 

Table 4. List of fifty MRI-based texture features

Gray-level co-occurrence 
matrix (GLCM)

Gray-level run length matrix 
(GLRLM)

Gray-level size zone 
matrix (GLSZM)

Neighbouring gray 
tone difference matrix 

(NGTDM)

Gray level dependence matrix 
(GLDM)

glcm_Autocorrelation (f1) glrlm_ShortRun Emphasis (f17) glszm_GrayLevel Non-
Uniformity (f30)

ngtdm_Contrast (f43) gldm_GrayLevelNon
Uniformity (f44)

glcm_ClusterProminence (f2) glrlm_RunPercentage (f18) glszm_Zone Percentage 
(f31)

gldm_SmallDependence 
Emphasis (f45)

glcm_ClusterTendency (f3) glrlm_RunEntropy (f19) glszm_Zone Entropy (f32) gldm_LargeDependence 
Emphasis (f46)

glcm_Contrast (f4) glrlm_GrayLevelVariance (f20) glszm_GrayLevelVariance 
(f33)

gldm_DependenceNonUniformity (f47)

glcm_Correlation (f5) glrlm_HighGrayLevelRunEm-
phasis (f21)

glszm_HighGrayLevel-
ZoneEmphasis (f34)

gldm_GrayLevel Variance (f48)

glcm_DifferenceAverage (f6) glrlm_LongRunEmphasis (f22) glszm_LargeAreaEmpha-
sis (f35)

                                         gldm_DependenceNonUniformity
                                        Normalized (f49)

glcm_DifferenceEntropy (f7) glrlm_LongRunHighGray-
LevelEmphasis (f23)

glszm_LargeAreaHigh-
GrayLevelEmphasis (f36)

gldm_LowGrayLevel
Emphasis (f50)

glcm_DifferenceVariance (f8) glrlm_LongRunLowGray-
LevelEmphasis (f24)

glszm_LargeAreaLow-
GrayLevelEmphasis (f37)

glcm_InverseVariance (f9) glrlm_LowGrayLevelRunEmpha-
sis (f25)

glszm_LowGrayLevel-
ZoneEmphasis (f38)

glcm_JointAverage (f10) glrlm_RunLengthNonUniformity 
(f26)

glszm_SizeZoneNonUni-
formity (f39)

glcm_JointEnergy (f11) glrlm_RunLengthNonUniformity-
Normalized (f27)

glszm_SmallAreaEmpha-
sis (f40)

glcm_JointEntropy (f12) glrlm_ShortRunHighGray-
LevelEmphasis (f28)

glszm_SmallAreaHigh-
GrayLevelEmphasis (f41)

glcm_MaximumProbability 
(f13)

glrlm_ShortRunLowGray-
LevelEmphasis (f29)

glszm_SmallAreaLow-
GrayLevelEmphasis (f42)

glcm_SumAverage (f14)
glcm_SumEntropy (f15)
glcm_SumSquares (f16)
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Table 5. Example of the formula and definition of each MRI-based texture feature.
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and total excision surgery at our institution. 
Subsequently, their diagnosis was confirmed 
using final pathological findings between 
2010 and 2023. The predictors of interest were 
50 texture features as continuous variables, 
which were extracted from MRI T1W 
images. These MRI-based texture features 
obtained from 5 classes: (1) gray-level co-
occurrence matrix (GLCM); (2) gray-level 
run-length matrix (GLRLM); (3) gray-level 

size-zone matrix (GLSZM); (4) neighboring 
gray-tone-difference matrix (NGTDM); 
and (5) gray-level dependence matrix 
(GLDM). Regarding formula and definition 
of the features were explained according 
to PyRadiomics’ documentation (https://
pyradiomics.readthedocs.io/en/latest/features.
html, accessed on 22 October 2024) (Tables 4 
and 5). The outcome of interest was either an 
IM lipoma or a WDLS. We can see that the 

Figure 4. Correlation matrix of fifty texture features for adipocytic tumors data set, representing the different shades. The dark 
shade signifies a strong correlation among the features. Conversely, the light color indicates a weak correlation.
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number of predictors was more than the sample 
size. It indicates that the high-dimensional 
problem was presented. Additionally, Figure 4 
shows the correlation matrix for the adipocytic 
tumors data set. The light shade denotes that 
the predictors have a low correlation, while the 
dark shade presents a high correlation among 
predictors. Furthermore, almost predictors 
had the variance inflation factor (VIF) values 
exceeding 10, indicating a concerning level 
of collinearity. Therefore, it is clear that the 
presence of multicollinearity is evident in 
this data. These above problems can cause 
the variance of logistic regression coefficient 
estimators to inflate and model overfitting. 
To solve all these problems, we employed the 
penalized methods (i.e., Lasso, elastic net, 
adaptive Lasso, and adaptive elastic net) on 

this case study. The classification performances 
of these penalized approaches are detailed in 
Table 6. In the cases of classifier with penalized 
logistic regression, we can see that the highest 
accuracy value (0.928) was derived from the 
adaptive Lasso with 

0.5ˆ lasso
j jw β

−
=



, whereas 
the lowest accuracy value (0.840) was derived 
from the elastic net method. Their respective 
precisions, recalls, F1-scores, and AUCs were 
0.919, 0.921, 0.925, and 0.935, respectively for 
this adaptive Lasso and 0.838, 0.838, 0.836, 
and 0.865, respectively for the elastic net. 
For classifier with SVM, the highest accuracy 
value (0.935) was also derived from the 
adaptive Lasso with 

0.5ˆ lasso
j jw β

−
=



, whereas the 
lowest accuracy value (0.870) was also derived 
from the elastic net method. Their respective 
precisions, recalls, F1-scores, and AUCs were 

Table 6. Performances of machine-learning algorithms for distinguishing between intramuscular lipomas and well-differentiated 
liposarcomas for 50 texture features in 40 patients. 

Classifier 
method

Variable selection approach

Lasso Elastic net

Adaptive Lasso Adaptive elastic net

ˆ ridge
j jw

γ
β

−
=



ˆ lasso
j jw

γ
β

−
=



ˆ elasticnet
j jw

γ
β

−
=



0.5γ = 1γ = 2γ = 0.5γ = 1γ = 2γ = 0.5γ = 1γ = 2γ =

Penalized LR
AUC 0.888 0.865 0.920 0.900 0.897 0.935 0.917 0.900 0.923 0.910 0.899
Accuracy 0.860 0.840 0.905 0.887 0.870 0.928 0.890 0.883 0.915 0.895 0.880
Precision 0.857 0.838 0.900 0.880 0.866 0.919 0.887 0.879 0.910 0.890 0.876
Recall 0.859 0.838 0.902 0.880 0.867 0.921 0.888 0.879 0.911 0.890 0.878
F1-score 0.857 0.836 0.900 0.880 0.868 0.925 0.888 0.880 0.910 0.891 0.877

SVM
AUC 0.890 0.888 0.930 0.925 0.910 0.946 0.920 0.914 0.921 0.910 0.884
Accuracy 0.885 0.870 0.925 0.910 0.890 0.935 0.912 0.900 0.911 0.890 0.876
Precision 0.880 0.866 0.920 0.912 0.889 0.932 0.909 0.881 0.908 0.883 0.871
Recall 0.880 0.867 0.922 0.912 0.886 0.934 0.910 0.885 0.905 0.883 0.872
F1-score 0.875 0.862 0.920 0.910 0.885 0.930 0.905 0.880 0.905 0.880 0.867

Lasso, Least Absolute Shrinkage and Selection Operator; Penalized LR, penalized logistic regression; SVM, support vector 
machine; AUC, the area under the receiver operator characteristic curve.
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0.932, 0.934, 0.930, and 0.946, respectively for 
this adaptive Lasso and 0.866, 0.867, 0.862, 
and 0.888, respectively for the elastic net. 

Discussion

This study revealed that the significant 
factors effecting the performance of penalized 
approaches under high-dimensional sparse 
data with multicollinearity were the power 
of adaptive weight and initial weight. In 
Table 3, we can see that the adaptive Lasso 
produced the smallest MPMSE. The key 
factors that impacted the MPMSE included 
the power of adaptive weight, initial weight, 
the degree of correlation, and sample size. 
When ρ  was increased while holding p and 
n fixed, the MPMSE values of all penalized 
approaches increased. Along with, the values 
of this MPMSE reduced with an increase in n. 
The worst outcome was obtained with a high 
degree of correlation ( ρ  = 0.95). For power of 
the adaptive weight on the 1 -norm penalty, 
choosing 

0.5ˆ lasso
j jw β

−
=



 is preferred for high-
dimensional sparse data with multicollinearity. 
Although there was no statistically significant 
difference in the MPMSE values between 
methods, the estimated coefficient values in 
adaptive Lasso with 

0.5ˆ lasso
j jw β

−
=



exhibited the 
lowest bias from the actual values (Figure 3). In 
Table 6, the results of the real-data applications 
evident that the adaptive Lasso has superior 
performance to the other methods. We can see 
that the results of the simulation study support 
this finding. 
Two previous studies compared the 
performances of the power of the adaptive 
Lasso and adaptive elastic net methods. First, 
Araveeporn19 compared the higher-order of 
the adaptive Lasso and adaptive elastic net 

methods for classification on high-dimensional 
data. Their independent variables were 
generated from the normal distribution with 
small and large dispersions. The results showed 
that the higher-order of the adaptive Lasso 
method outperformed on large dispersion, but 
the higher-order of the adaptive elastic net 
method was preferred with small dispersion. 
For another study, Sudjai et al20 reported that 
the square root of the adaptive elastic net 
performed best under high-dimensional sparse 
data with multicollinearity. The results of 
our study are comparable with those of these 
studies. However, both two previous studies, 
there are no consideration present in choosing 
appropriate the initial weight for the adaptive 
Lasso approach. Our study demonstrated that 
adjusting the initial weight together with the 
power of adaptive weight for the adaptive 
Lasso can enhance the efficiency of the variable 
selection process, leading to the construction of 
a classification model that can the potentially 
distinguish IM lipomas from WDLSs. 
Regarding a confounding factor in the real-
data applications, a potential confounders were 
controlled by setting the following inclusion 
criteria as follows: (1) the final pathological 
diagnosis must be confirmed as IM lipoma 
or WDLSs; (2) received surgical excision of 
primary tumor; (3) received preoperative T1W 
MRI protocol. The exclusion criteria were set as 
follows: (1) the patients underwent anticancer 
treatments before undergoing the MRI scan; (2) 
having a history of other malignant tumors; (3) 
poor quality MRI image. 
Our study has some limitations. First, we 
did not explore all possible data structures. 
Consequently, we were not able to identify 
all estimation difficulties that may arise in 
modeling real life data sets. Thus, we can 
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only generalize our findings to a real-data set 
that has the problems of high-dimensional 
sparse data with multicollinearity. Another 
limitation, we did not explore modeling with 
qualitative (categorical) covariates. Therefore, 
the guidelines of this article should only 
be considered for quantitative (continuous) 
predictors. 

Conclusion

Adjusting the initial weight together with the 
power of adaptive weight can help improve 
the efficacy of variable selection procedure, 
i.e., the adaptive Lasso can exactly extract 
significant information, and subsequently 
produce the classification model that has the 
potential for differentiating benign adipocytic 
tumors from adipocytic malignancies. We 
suggest the use of the adaptive Lasso method 
for classification in binary outcome on high-
dimensional sparse data with multicollinearity 
as follows: we should be considered using 
the first power of the method (i.e., γ = 1) and 
ridge estimator as the initial weight when 
there is a low or moderate correlation among 
the independent variables. In contrast, if the 
independent variables are high collinear, 
the initial weight should be evaluated using 
the Lasso estimator and γ= 0.5. In practice, 
implementing above recommendation is 
usefulness as follows: (1) it may help to 
lessen diagnostic uncertainty in medical 
image classification with MRI; (2) it helps in 
alerting physicians to promptly refer a patient 
to a sarcoma center when needed; (3) reduce 
unnecessary biopsy; and (4) assists surgeons 
decide whether to hold off or expedite surgery. 
A further study should be developed the ML 
algorithms and modifying the mathematical 

approaches that will increase the efficacy of 
classification in diagnostics of cancers under 
all possible data structures for simulation 
study and real-world scenarios.  
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