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Introduction: Mendelian randomization (MR) assesses the causal effect of risk factors by using genetic 
variations as instrumental variables (IV) in nonexperimental data. IV strategies are one of a few available 
methods for determining causal effects in the absence of specific knowledge of all confounders in the exposure-
outcome relationship. To use an IV as a legitimate instrumental variable, it must meet the following criteria: 
relevance, exchangeability, and exclusion restriction. A weak instrument is a circumstance in which there is 
a piece of weak statistical evidence for an association between IV and exposure. Weak instruments cause 
significant issues, including (i) insufficient statistical power to hypothesis testing, (ii) increasing bias with 
deviation from IV assumptions, and (iii) asymptotic estimation of standard errors and confidence intervals. 
Therefore, in this study, we intend to introduce the Mendelian randomization method, weak instrumental bias, 
and statistical remedy methods used in this bias. 
Methods: Current study was conducted by using Medline/PubMed, Scopus, Web of Sciences and Google 
Scholar. 
Results: This review provides a comprehensive description of the principles of MR, and a guide to basic MR 
methodology. To deal with these challenges, the bulk of the review considered statistical remedies. The review 
ends with a section that details the practical limitations, and recommendations regarding MR and the weak 
instruments. 
Conclusion: Depending on the type of data, several solutions can be used in one and multiple IV. Moreover, it 
can be used in solutions in the design and analysis phase to minimize the effects of weak instruments.
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Introduction

One of the difficulties for medical researchers 
is to determine the causal risk factors or 
exposures. Randomized controlled trials 

(RCTs) are used as a standard method. Random 
allocation in the RCTs removes the potential for 
bias in the allocation of participants; that is, the 
intervention and non-intervention groups will 
be balanced at unmeasured prognostic factors 
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and other characteristics of the participants at 
randomization.1 Nevertheless, RCTs are always 
not feasible,2 then the only remaining option is 
observational studies.3 Here, confounding and 
reverse causation can hamper causal inference 
in observational epidemiological studies.4 On 
the other hand, causal inference is challenged 
because of the absence of a random assignment 
for the exposure. 
If confounders are known and measured, they 
can control by including them in regression 
models.5 Due to the nature of the confounder 
variables, if the number of these confounders 
is large we cannot expect an unbiased 
estimate from the regression model and a true 
relationship of exposure and outcome, even 
if the study design and analysis method are 
appropriate.
The instrumental variable (IV) method has 
been proposed as an alternative statistical 
approach. The IV techniques are a few 

available ways to estimate the causal effects 
without fully knowing all the confounders of 
the exposure-outcome association.6 The IV 
method was initially introduced by economists 
and later used in Mendelian randomization 
(MR) analysis in medical statistics.7 The MR is 
an analytical method that uses genetic variants 
as IVs in nonexperimental data for assessing 
and estimating the causal effects of risk 
factors.8,9 MR is a popular technique that eludes 
confounding variables in an observational study 
and evaluates causal factors for phenotypes 
that would not suit RCTs (figure 1).10

MR is an application of IV analysis. According 
to Mendel's first and second inheritance 
laws, MR is based on that genetic variants 
are randomly allocated during meiosis, 
thus mitigating concerns about reverse 
causation,10–12 though this concern is not 
completely eliminated.13 The term MR was 
coined due to its relevance to Mendel's laws. 

Figure 1.  A hierarchy of causality from observational epidemiology to interventional studies.
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As a result, inherited variants are free of the 
potentially confusing environment.14 MR 
study's benefits are that it identifies differences 
genetically, remains constant if untreated, is not 
affected by selection bias, and reflects long-
term differences.15 In MR implementation, 
several steps must be performed in a row to 
obtain satisfactory results, summarized in 
Figure 2.
Mendelian deconfounding is another name for 
Mendelian randomization because of the effect 
of causality without biases due to confounding.16 
By finding a genetic variant that meets IV 
assumptions, we can estimate the unconfounded 
connection between exposure and outcome, 
summarized in table 1 and figure 3.17

A weak instrument is a phenomenon where the 
statistical association between risk factor and 
IV in the data set is weak and does not explain 

much variation in the risk factor. By and large, 
a weak instrument bias occurs when there is 
insufficient statistical evidence to support an 
association between IV and exposure.
Another assumption is required for estimating 
a causal effect via the IV analysis; all 
associations are linear and not affected by 
statistical interactions. This assumption 
becomes problematic when the outcome is 
binary. Because we want to estimate the odds 
ratio or risk ratio in this situation, and this 
association is exponential or non-linear.18

Although the instrument variable could be 
essentially any variable, single-nucleotide 
polymorphisms (SNPs) are widely utilized. 
Genome‐wide association studies (GWAS) 
are observational studies and hypothesis-free 
methods to identify associations between 
SNPs and phenotypic traits (diseases).19 This 

Figure 2.  Flow chart of steps for MR analysis.

Table1. Core assumptions underlying MR
Assumptions Terms Description

(1) Relevance G has a causal effect on X

(2) Exchangeability or independence No confounding for the effect of G on Y
(3) Exclusion restriction G affects the outcome Y only via X

Demonstrated the main assumption of the instrument variable. If these assumptions are met, then the estimate has a free con-
founding effect of the exposure and outcome association.
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means that many of the candidate genes have 
been published through GWAS so that MR 
studies can now be exploited without the need 
to attract new patients or additional design 
studies.
Herein, several types of information existed. 
Summary data refers to methods that use 
the summary level of the IV-exposure and 
the IV-outcome association, including beta-
coefficients and standard errors from linear 
or logistic regression to get causal effect 
estimates. The effect directly represents the 
genetic instrument.20,21 Each individual's 
information is accessible in individual data and 
can achieve regression estimates by logistic or 
linear regression.
Other data is available under meta-analysis. It 
involves (i) individual data meta-analysis (that 
is, each individual's information (exposure and 
outcome) are incorporated before regression 

analysis to obtain associations (IV-exposure 
and IV-outcome)), (ii) summary data meta-
analysis (that is, the effect estimates can be 
pooled for identical or different relationships 
of the IV-exposure and IV-outcome), (iii) 
study data meta-analysis (that is, MR estimates 
for various SNPs are pooled straight to render 
the synthesized causal estimate).22 The 
following figure 4 was indicated the summary 
of methods for summary and individual-level 
data information.
MR can be undertaken in a one-sample, a two-
sample, or a subsample. In one-sample MR, 
the exposure and outcome data are obtained 
from a single dataset. In two-sample MR, the 
exposure and outcome data are obtained from 
different datasets.8,23 A vital feature of a two-
sample is that the analysis can be performed 
using summary-level data from a GWAS.24 In a 
subsample, data on the exposure are achievable 

Figure 3. The A case represents the conceptual of Mendelian Randomization, and the B case represents the main assump-
tions of Mendelian randomization method. The main purpose is to estimate the exposure-outcome association without 
affecting the confounding variable. We try to estimate this association using an IV such as SNP.
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only for a subset of participants, yet the 
outcome data are attainable for all participants, 
or data on outcome are accessible for a subset 
of participants. Nevertheless, data on exposure 
exist for all participants.25 
Other designs are also available. In bidirectional 
MR, it can assess both exposure and outcome 
instruments whether the exposure variable 
causes the outcome or whether the outcome 
variable causes the exposure.26 In two-step MR, 
the goal is to evaluate whether an intermediate 
trait works as a causal mediator role between the 
exposure-outcome association.27 Multivariable 
MR is an extension of standard (univariable) 
MR that permits multiple exposures, and it 
can dominate the genetic variants that are 
pleiotropically associated with multiple 
correlated exposures.28 Factorial MR is 
designed to answer questions on interactions.29

In the last two decades, the use of the Mendelian 
randomization approach has increased 
dramatically. Therefore, this study intends 
to overview of the Mendelian randomization 

method, weak instrumental bias, problem and 
challenges, and statistical remedy methods 
used in this bias.

Weak instrument

A weak instrument is a scenario that lacks 
strong statistical evidence of an association 
between IV and exposure. This phenomenon 
will occur if the first condition of IV is not 
met.30 In other words, an IV is weak if it 
reports a little small amount of the variation of 
the exposure, and this weak is directly related 
to the sample size.31 
The IV approach suffers from finite samples 
howbeit it can be used to render asymptotically 
unbiased estimates of causal effects in 
confounding attendance.32 Even a weak IV 
is valid in infinite samples, so convinced 
assumptions and estimates will be unbiased. In 
finite samples, the IV estimator's average value 
will be biased, and its magnitude belongs to 
the strength of the IV-exposure association.33 

Figure 4.  Methods for the estimation of causal effects. Summary data refers to methods that use the summary level of 
the IV-exposure and the IV-outcome association, including beta-coefficients and standard errors. In individual data, each 
individual's information is accessible.
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A measure of the strength of a weak 
instrumental variable 

A measure of the strength of a weak instrumental 
variable is the Cragg–Donald F statistic 
(F<10), which is the same in the IV-exposure 
regression.34,35 The F-statistic is related to 
the proportion of variance in the phenotype 
explained by the genetic variants (R2), sample 
size (n), and number of instruments (k) by the 
following formula

2
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The strength of selected single-IVs was also 
assessed in two sample MR by following 
formula
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Since the F statistic depends on the sample 
size, the bias can be mitigated by increasing the 
sample size. Likewise, if there are instruments 
that do not contribute much to explaining the 
variation in the phenotype, removing these 
instruments will increase the F value.
However, such a cut-off point (<10) from 
the F statistic can be deceiving. This value is 
arbitrary and cannot be called strong or weak 
by looking at the binary to IV. In contrast, if 
we call an IV weak, it does not mean that it 
is an inherently weak IV because any IV can 
increase its power by increasing the sample 
size.36 Also, regarding the sample size, the 
F statistic is not easily a measure of the 
coefficient of determination (R2); hence, the F 
cannot trustworthy guide due to large sampling 
variability.37 Besides, the post hoc selection 
of data according to measured F-statistics 

can intensify bias.38 Indeed, the cut-off point 
was ascertained based on the Two-Stage least 
squares (2SLS) method and is not necessarily 
related to further IV methods. Hence, the F 
statistic may not even be a reliable measure of 
instrument strength for obtaining identification 
in a semi-parametric model.39

Weak instrumental variable in an one-
sample design

In a one-sample design, estimates from the 
IV method are asymptotically unbiased. It 
can have a remarkable bias in finite samples, 
such as weak instrument bias, which leads 
to the confounded observational association 
between the exposure and outcome. The 
weak instrument's magnitude depends on 
the strength of association between the IV 
and the exposure37 and inflates type 1 error 
rates.34 The amplified bias in one-sample MR 
can prove by evidence through an assessment 
of the Wald ratio; hence, the IV-outcome 
association's coefficient remains constant, yet 
the coefficient of the IV-exposure association 
is reduced because of the weak instruments.
In the 2SLS method, weak instrument bias 
can be described as deriving from overfitting 
in the first stage, which happens at least in a 
portion resulting from chance correlations of 
the instrument variable with confounders.37 
In a one-sample design, the first stage's fitted 
values correlate with the outcome in the finite 
sample size, even in the lack of a causal effect. 
Thus, this phenomenon yields to the bias of 
finite sample 2SLS estimates. 

Weak instrumental variable in a two-sample 
design
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In a two-sample design, a weak instrument 
towards the null direction.40 Thus, the bias in 
the way of the null can be lower earnest than 
bias in the way of the observational association. 
Besides, such a scenario is conservative, 
resulting in an inflated type 1 error; inversely, 
it may result in less power to identify a causal 
effect and raise the probability of a type 2 
error.25 Briefly, in the ratio method, if the 
outcome is continuous and regression analyses 
are a linear model, weak instrument bias in 
the one-sample design is derived from the 
correlation between the regression coefficients 
in the numerator and denominator. At the same 
time, the numerator and denominator will be 
uncorrelated in the two-sample design.41

In a two-sample design with individual-level 
data, estimates can be computed by getting 
estimates of the first stage in one dataset and 
creating fitted values of the second dataset 
exposure. In the second stage, the outcome 
and exposure are no longer correlated due to 
confounding. This scenario is referred to as a 
split-sample 2SLS.42 Any bias resulting from 
weak instruments is in the way of the null.25 

Meanwhile, weak instruments assist in testing 
the effect of heterogeneity and distinguishing 
candidate IVs that do not meet the exclusion 
restriction.43

Problems and challenges

The bias is a term that refers to the difference 
between the expectation and the parameter's 
true value. The weak instrument and 
establishing bias can lead to underestimated 
confidence intervals and weak coverage 
properties.37 In other words, a reasonable 
confidence interval should not be large or 

infinite if the data possess information about 
a parameter; hence, weak instruments lead to 
inconsistent estimates with wide confidence 
intervals, which can significantly influence the 
power of the analysis.44

Because of a weak instrument, 2SLS estimators 
have a finite sample bias; hence, they can grow 
bias by adding weak instruments to the first 
stage. Besides, weak instruments can enlarge 
any residual bias through a confounded 
instrument so that low violations of IV 
assumptions can make a direction to significant 
inconsistency in the IV estimator.45 Moreover, 
a single weak instrument will possess small 
power to decline the null hypothesis and 
makes the point estimate hard to interpret. Any 
miniature violation in the exclusion restriction 
assumption can account for significant biases.46

In a two-sample design, if there is some 
overlap, it is uncertain whether bias leads to 
weak instruments in the way of the null (zero 
overlaps) or the observational association 
(complete overlap). Besides, if individuals 
were only utilized in the detection dataset in a 
binary outcome, this should not bias. However, 
a weak instrument bias will occur when 
controls and cases are used in the detection 
dataset.20

In general, weak instruments leads to the 
following problems. Firstly, they may provide 
small or no benefit information and prepare low 
statistical power to test hypotheses. Secondly, 
bias amplified when the core instrumental 
variable assumptions violation. Thirdly, make 
asymptotic approximations for standard errors 
and confidence intervals. Fourthly, even when 
available big samples, biased towards between 
the association of the outcome and exposure 
in the one-sample design and towards the 
direction of the null in the two-sample design. 
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A common problem of the weak instrument for 
semi-parametric approaches is that there is no 
warranty for estimating a unique parameter.33

Statistical method remedy

One IV in individual level data

Bias with one IV in medium-wide datasets is 
usually unimportant, yet bias may be discussed 
when several IVs.47 

Multiple IVs in individual level data

In instrumental genetic variables, one debate 
is that many genetic variants are only weakly 
associated with exposure. To this end, 
several studies for inferential procedures 
provide better asymptotic approximations 
in the finite sample.32 Although limited 
information maximum likelihood (LIMI) 
may not completely solve the problem, it is 
preferred over the 2SLS estimator.48 Other 
partially robust estimators include Jackknife 
instrumental variables, Fuller-k estimator, or 
bias-adjusted 2SLS that provide relatively 
more reliability than 2SLS.49

On the other hand, it has been shown to be 
cautious for using "no moment" estimators 
such as LIML.50 Hence, alternative approaches 
recommended including, the jackknife 2SLS 
(JK2SLS) estimator and Wayne Fuller's.48 
However, one of the merits of using the 
LIML over 2SLS is that it enables a limited 
confidence interval. Hence, LIML provides 
lower biased estimates in the attendance of 
weak instruments.22

Confidence intervals such as a Fieller’s theorem 
and Bayesian posterior distribution drawn from 
Monte Carlo Markov chain sampling (MCMC) 

have better coverage properties. Moreover, 
inverting a test statistic, such as the Rubin test 
statistic or the conditional likelihood ratio test 
statistic, can be used as an alternative approach 
to decrease power with stronger instruments.33

Another way is allele score. The large numbers 
of instrumental variables, allele scores, genetic 
risk scores, gene scores, or genotype scores 
can reduce weak instruments' problems. A 
univariate allele score as one IV, rather than 
any single genetic variant as a discrete IV, 
helps solve IV assessment problems caused 
by the weak instruments. However, a weak 
instrument should not be entangled with an 
invalid instrument because a weak instrument 
can be amplified stronger by increasing more 
data.36 Two approaches exist for incorporating 
information on multiple uncorrelated IVs into 
a single causal estimate; i) allele scores and 
ii) the summary statistic method. However, 
unweighted and externally weighted allele 
scores have been recommended for eluding 
bias depending on the weak instrument.40 In 
2SLS, when one or more genetic instruments 
are weak, one approach combines into a single 
genetic instrument through genetic risk scores 
(weighted or unweighted).13

The commonly used 2SLS estimator is 
biased.51 To this end, two methods have been 
proposed for this situation. Building an allele 
score (weighted or unweighted) and utilizing 
the 2SLS with only one IV, and utilizing 
the complete collection of instruments 
simultaneously with a robust estimation 
method through the routine standard errors 
for limited information maximum likelihood 
(LIML) is wrong and result in false inference 
for testing hypotheses.52 
Besides, robust methods such as merging the 
variants into a single allele score, using the 



140

Vol 10  No 2 (2024)

A Review of Mendelian Randomization in the Presence of Weak ...

Habibi D et al. 

LIML and continuously updating estimator 
(CUE) estimator do not conflict with the 
many weak instruments. However, it has been 
shown that the LIML be biased with many 
weak instruments because of heteroskedastic 
errors.53 Hence, The CUE estimator is one 
choice in this situation, though for estimating 
risk differences for binary outcomes and its 
standard errors again require to be corrected.52 

However, it is illustrated that if there are 
many weak instruments, then CUE is a better 
selection than LIML and 2SLS.54 
To relieve weak instrument bias in the 
individual-level data, utilize the LIML or CUE 
method, also using a jackknife IV estimator 
or equivalently an allele score approach using 
leave-one-out cross-validated weights or an 
allele score approach using equal or externally 
specified weights.20

Two-sample summary data

Several tests were proposed in econometrics 
for individual-level data, such as the Anderson-
Rubin test, the Kleibergen test, and the 
conditional likelihood ratio test. These tests 
have control on type I error regardless of the 
instrument's power(https://academic.oup.com/
biometrics/article/78/4/1699/7460098?login=f
alse). Wang et al. propose robust test statistics 
for two-sample summary data by developing 
these tests and demonstrating that these tests 
control type I error under weak instrument 
asymptotic. Besides, they show that the 
mrCLR (extending the conditional likelihood 
ratio test) has better performance.55 

YE et al. proposed the debiased inverse 
variance weighted estimator in two-sample 
summary data for MR.56 This approach is a 
simple adjustment of the inverse variance-

weighted average method (IVW) estimator and 
doesn't need screening. Initially, meta‐analysis 
methods have been used in MR  as a tool for 
analyzing individual-level data and recently 
combining GWAS in two‐sample summary 
data.57 An attractive advantage of the two-
sample design is a protection versus the weak 
instrument bias.24 Also, sensitivity analyses 
can be conducted in this situation.23 

Statistical remedy in the design and analysis 
phase

The measure of instrument strength for the 
MR-Egger method is based on the Bowden 
I2 statistic, which gets values between 0 and 
1. If I2 obtains a value of one, then the MR-
Egger estimate cannot suffer from the bias of 
the weak instrument.58 In a one-stage meta-
analysis, it is revealed that weak instrument 
bias can be mitigated.59

In addition to the above, the bias caused by 
the weak instruments can be minimized in 
the design and analysis phase. One way is to 
increase F statistics. As mentioned earlier, the 
F-statistic is used as a measure to assess the 
instrument's strength. As the F-statistic pertains 
to the sample size, the bias decreases as the 
sample size increases.38 Excluding instruments 
that explain fewer variations in the phenotype 
leads to an increase in F-statistic. Parsimonious 
models typically increase F-statistics.31 
Another way is adjusted according to measures 
covariates. If the covariates can describe the 
variation in the exposure so that covariates 
are not in the path of causality between the 
exposure and the outcome, we can include 
these covariates in the model. Simulations 
have shown that may increase the genetic 
association with the exposure and reduce weak 
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instrument bias.38 In this case, F-statistic is 
called partial F statistic.60 Another way is based 
on the meta-analysis.60 If an IV estimator is 
not biased, then the mean exposure's correct 
values under different genetic subgroups are 
known. Therefore, to obtain accurate estimates 
of exposure levels in each genetic subgroup, 
the estimates of exposure association could 
combine in different studies.38

Weak instrument bias will be low according 
to the P-value in a linear regression of the 
exposure for each IV lower than 1 × 10−5.47 
Strong instruments in polygenic scores are 
pleasant to forbid weak instrument bias.61 

Briefly, this section is summarised in figure 5.

Conclusion

The relationship between exposure and 
outcome in observational epidemiology studies 
can be disrupted by unmeasured or measured 
confounders, reverse causation, and potential 
biases.62 Although these damaging effects can 
be reduced with the suitable study design and 
analysis approach, they cannot be eliminated. 
Moreover, the correlation between exposure 
and outcome cannot be considered causal.63 

We also have limitations in using the RCT as 
a standard method. Thus, the IV approach was 
found.54

The idea behind the MR approach was that 
in addition to overcoming the destructive 

Figure 5.  Summarized statistical remedy when there is the weak instrument.
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effects in observational studies, a causal 
relationship could be found between exposure 
and outcome to simultaneously control the 
effect of confounding variables of exposure-
outcome association, which does this using 
the IV.55 The MR method behaved to mimic 
an RCT. Instead of assigning individuals to 
interventions, gene variants were used as a 
specific exposure because of the nature of 
conception.56 The advantage of using genetic 
variants is that they are invariant and stay fixed 
throughout life. Today, great genetic variants 
are linked with various diseases and intricate 
traits found by GWAS;64,65 that is, the MR 
can now easily leverage and launch through 
multiple observational study contexts.60 
However, there are also important differences 
between MR and RCT. Alleles were used as 
IVs in MR usually produce minimal changes 
in the variable exposure level, while in RCTs, 
the intervention is much more effective. 
Another fundamental difference is that in 
RCT, intervention is introduced at a certain 
period in life. In contrast, in MR, there will be 
a change in exposure passed on by inheritance 
from the time of fertilization. In this way, the 
MR approach provides beneficial information 
before conducting a trial. For this reason, it can 
be argued that even if all MR assumptions are 
fully valid, an MR study can never prove the 
success of an environmental intervention.57–59

In general, there are two types of IV. First, 
those that are following the control and 
randomized by the investigator. Second, those 
are randomized through inherent. However, 
the second cause lies in the MR.17 To be a 
valid IV in a univariable MR, each genetic 
variant must meet the core assumption. The 
IV is associated with the risk factor. The IV 
is independent of all confounders of the risk 

factor‐outcome association.66 The IV does not 
affect the outcome, except possibly through its 
association with the exposure.67

There are multiple accessible MR methods 
to estimate a causal effect. In general, the 
selection of MR method relevant to the 
accessibility of individual or summary data, 
number of SNPs in an IV, attendance and 
proportion of pleiotropic variants, strength 
of an IV, attendance of correlations between 
SNPs establishing an IV, and the binary or 
continuous outcome variable.22,68 Methods can 
be classified according to whether the data is 
at the individual level or in summary data. In 
uncorrelated variants, summarized data are the 
same, similarly efficient as the individual-level 
data.47 The 2SLS, control function estimator, 
and LIMI methods are at the individual level, 
whereas the ratio, IVW, weighted median, and 
MR-Egger methods are used in the summary 
data. However, it is reported that the 2SLS 
regression and ratio approach was the most 
popularly used method.69 
A weak instrument is a phenomenon where 
the statistical association between risk factor 
and IV in the data set is weak and does not 
explain a large proportion of variation in the 
risk factor so that IV estimates are biased and 
the distribution of the IV estimate is weakly 
approximated through normal distribution.70

In general, weak instruments leads to the 
following problems. Firstly, they may provide 
small or no benefit information and prepare low 
statistical power to test hypotheses. Secondly, 
bias is amplified when the core instrumental 
variable assumptions violation. Thirdly, create 
asymptotic approximations for standard errors 
and confidence intervals; hence, they propose 
an unstable estimate instead of very stable. 
Fourthly, large samples are biased towards 
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between the association of the outcome and 
exposure in the single sample design and 
towards the direction of the null in the two 
sample design.43,71

Using the 2SLS method for a constant 
mean F statistic, it has been shown that the 
accuracy of the IV estimator proliferates as 
the number of instruments proliferates. Then 
the bias proliferates (Bias-variance trade-
off). Nevertheless, with the LIML method, 
the bias did not increase with the number of 
instruments, but the accuracy is slightly less 
than 2SLS.20 In practice, to ensure the large 
expected F statistic values, the subject of weak 
instrument bias should be considered before 
data collection through determining sample 
sizes, instruments, and genetic model.20

Weak instrument bias can be lessened through 
LIML, bayesian, and allele score methods. 
Besides, confidence intervals by the Rubin 
test statistic or Bayesian MCMC methods 
can be maintained. On the other hand, it is 
demonstrated that LIML and CUE methods 
had an unbiased estimate when standard errors 
were accurate for the attendance of many weak 
instruments.72

Finally, it is demonstrated that the allele score, 
CUE, and LIML provide accurate inferences 
under homoscedasticity. The LIML is to be 
a little more efficient than the CUE when 
homoscedasticity maintains. In small samples, 
LIML and CUE are probable to be lower 
efficient than allele scores. The CUE should 
use instead of the LIML when conditional 
heteroscedasticity holds. Moreover, CUE and 
LIML are less efficient when many instruments 
and modest samples are available.52

Abbreviations

List of common abbreviation terms used in 
Mendelian randomization studies
Instrumental variable (IV): The IV 
techniques are a few available ways to estimate 
the causal effects without fully knowing all 
the confounders of the exposure-outcome 
association. Briefly, The IV is referred to as 
an external variable that is associated with 
exposure, and it is independent of the outcome 
as well as any factor linked to the outcome, 
other than by exposure.
Mendelian randomization (MR): The MR is 
an analytical method that uses genetic variants 
as IVs in nonexperimental data for assessing 
and estimating the causal effects of risk 
factors. Mendelian randomization is a popular 
technique that eludes confounding variables in 
randomize clinical trials (RCTs) and evaluates 
causal factors for phenotypes that would not 
suit RCTs. In fact, Mendelian randomization is 
an application of instrumental variable. 
Main assumption in mendelian randomization: 
To utilize a genetic variant to be a valid 
instrumental variable, several main 
assumptions must be satisfied. (i) The IVs 
are strongly associated with exposure(s) and 
should be clear quantifiably. (ii) The IVs 
are not linked with any confounder of the 
exposure-outcome association. (iii) The IVs 
do not affect the outcome, except possibly 
through its association with the exposure(s).
Weak instrument bias: A weak instrument is a 
scenario that lacks strong statistical evidence of 
an association between IV and exposure. This 
phenomenon will occur if the first condition 
is not met. An IV is weak if it reports a small 
amount of the variation of the exposure, which 
is directly related to the sample size.
Pleiotropic effect: Two types were existed. 
Horizontal pleiotropy is that the outcome 
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affected through another trait or biological 
pathway. Vertical pleiotropy is that affect 
other traits through the risk factor of interest 
(exposure). Horizontal pleiotropy will occur 
if the third condition is not met, because of 
not affect only the outcome by exposure. 
Horizontal pleiotropy is problematic for 
Mendelian randomization studies, but vertical 
pleiotropy is in general not problematic. 
One sample Mendelian randomization: The 
data on the exposure and the outcome are 
obtained from a single dataset or genetic 
variants, risk factor, and the outcome are 
obtained in the same participants.
Two sample mendelian randomization: The 
exposure and outcome data are obtained 
from different datasets. The advantages are 
including, (i) measuring the risk factor or 
outcome, or both are expensive, (ii) increasing 
the statistical power, because of synthesizing 
data from multiple data sources.
Summary statistical data: summary-level 
data of the IV-exposure and the IV-outcome 
association, including beta-coefficients 
and standard errors from linear or logistic 
regression to get causal effect estimates.
Individual-level data: Each individual's 
information is accessible.
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