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Introduction: The COVID-19 pandemic has had a significant impact on global health, resulting in more 
than 6 million reported deaths worldwide as of April 2023. This study aimed to investigate the potential of 
C-reactive protein (CRP), procalcitonin (PCT), and D-dimer as biomarkers for assessing disease severity in 
COVID-19 patients in Kinshasa, Democratic Republic of Congo.
Methods:A retrospective examination was conducted involving 339 COVID-19 patients admitted to Kinshasa 
hospitals between January 2021 and March 2022. CRP, PCT, and D-dimer levels were measured in all patients 
and compared between those with severe and non-severe illnesses.
Results: Our findings revealed significantly higher CRP, PCT, and D-dimer levels in severe cases compared 
to non-severe cases. Specifically, the median CRP level was 120.6 mg/L in severe cases, 47.3 mg/L in mild 
cases, and 13.5 mg/L in moderate cases. The median PCT levels were 0.26 ng/mL in severe cases, 0.08 ng/
mL in mild cases, and 0.07 ng/L in moderate cases. Additionally, the median D-dimer level was 1836.9 µg/L 
in severe cases and 597.6 µg/L in mild cases, with a value of 481.1 µg/L in moderate cases. System learning 
techniques were also employed to predict disease severity based on these biomarkers, achieving high accuracy.
Conclusion: Our findings suggest that CRP, PCT, and D-dimer serve as valuable biomarkers for identifying 
severe COVID-19 cases in Kinshasa. Furthermore, the application of machine learning methods can yield 
accurate predictions of disease severity based on these biomarkers. These biomarkers hold the potential to 
assist clinicians in informed decision-making regarding patient management and contribute to improved 
clinical outcomes for COVID-19 patients.
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Introduction

The COVID-19 pandemic caused by the 
severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) has become a major global 

health crisis, affecting millions of people 
worldwide. The clinical manifestations of 
COVID-19 vary from asymptomatic or mild 
respiratory symptoms to severe acute respiratory 
distress syndrome (ARDS) and multiple organ 
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failure, which can result in mortality.1 Early 
identification of disease severity is essential 
for appropriate patient management and to 
prevent adverse outcomes.2,3 

Biomarkers such as C-reactive protein (CRP), 
procalcitonin (PCT), and D-dimer have been 
investigated as potential indicators of disease 
severity in COVID-19 patients.4-6 CRP is an 
acute-phase reactant that increases rapidly 
in response to inflammation, while PCT is a 
marker of bacterial infection and inflammation. 
D-dimer is a fibrin degradation product that 
reflects the presence of hypercoagulability 
and thrombosis. Several studies have reported 
the potential of these biomarkers in predicting 
disease severity and clinical outcomes in 
COVID-19 patients.7-9

The threshold for a positive D-dimer result 
can vary depending on the laboratory and the 
specific assay used for testing. However, in 
general, a D-dimer level greater than 500 ng/
mL is considered to be significantly elevated.10

The threshold for PCT can vary depending on 
the clinical context and the laboratory where 
the test is performed. Commonly, PCT is used 
as a biomarker to help diagnose bacterial 
infections and guide antibiotic therapy. In a 
general context, a PCT level below 0.1 ng/
mL is considered to be a low risk for bacterial 
infection, while levels above 0.5 ng/mL are 
more suggestive of bacterial infection.11 
The threshold for a positive CRP result can vary 
depending on the laboratory and the specific 
assay used for testing. However, in general, a 
CRP level greater than 10 mg/L is significantly 
elevated and may indicate a serious underlying 
condition. Lower levels, such as between 3-10 
mg/L, may also be considered positive in 
certain clinical contexts, but the interpretation 
of CRP results should always be done while 

taking into account the patient's medical 
history.12-14 It should be noted that the study 
population exhibits relatively high CRP levels, 
which may be attributed to the fact that 55% of 
the subjects have comorbidities.
Recent studies have suggested that elevated 
levels of CRP, PCT, and D-dimer are associated 
with increased disease severity, need for 
hospitalization, and mortality in COVID-19 
patients. For example, Liu et al. (2020) 
reported that PCT levels were significantly 
higher in severe cases compared to mild 
cases.15 Moreover, Zhou et al. (2020) found 
that D-dimer levels were significantly elevated 
in non-survivors compared to survivors of 
COVID-19.16,17

In this retrospective study, we aim to investigate 
the utility of CRP, PCT, and D-dimer as 
biomarkers for disease severity in COVID-19 
patients. We will examine the levels of these 
biomarkers in patients with mild (stage 1), 
moderate (stage 2), and severe disease (stage 3 
and 4). The utilized data set has been collected 
by the Department of Radiodiagnosis and 
Medical Imaging, University Clinics of 
Kinshasa, Kinshasa, Democratic Republic of 
Congo.
Overall, this study will contribute to the 
growing body of evidence on the potential 
of CRP, PCT, and D-dimer as biomarkers for 
disease severity in COVID-19 patients and 
may inform clinical decision-making and 
patient management strategies.
The paper is organized as follows: Section II, 
reserved for Materials & Methods, includes 
descriptions of the patient data, the imaging 
technology used, the data collection protocol, 
and the initial handling of the data. Section III 
focuses on the analytical methods, machine 
learning model configurations, and statistical 
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evaluations performed on the collected data 
ensuring transparency and facilitating easier 
comprehension of the Results in section IV. We 
discuss the implications and limitations of our 
findings in the subsequent Section V. Finally, 
we conclude the paper with a summary of our 
main contributions and directions for future 
research in section VI.

Methods

The utilized primary database provides 
information about COVID-19 patients of 
the University Clinics of Kinshasa, in the 
Democratic Republic of Congo. We have 
conducted a retrospective study of 339 
COVID-19 patients admitted to the hospitals 
of Kinshasa between January 2021 and March 
2022. Informed consent was obtained from 
all participants. The consent process involved 
participants being informed about the study’s 
aims, procedures, potential risks, and their 
rights, including the right to withdraw from the 
study at any time without consequence. The 
study was approved by the ethics committee of 
the University of Kinshasa.
To ensure a focused and relevant study 
population, we established inclusion and 
exclusion criteria. Inclusion criteria included 
individuals aged 18 years and over. Exclusion 
criteria involved patients with incomplete 
medical records, pregnant women, and 
patients receiving treatment for cancer, as 
these conditions could complicate the analysis.
We conducted a retrospective analysis of chest 
CT images of 339 patients hospitalized for 
SARS COV-2 pneumonitis at the Diamant 
medical center in Kinshasa, Democratic 
Republic of Congo, during the second, third 
and fourth waves of the COVID-19 pandemic 

in Kinshasa. 
SARS-CoV-2 infection was confirmed by RT- 
PCR from upper respiratory tract specimens. 
All patients were managed in accordance 
with the national management protocol issued 
by the National Technical Secretariat for the 
Response to COVID-19 in the DRC. We carried 
out this study over a period of 13 months, from 
January 2021 to March 2022. All patients were 
diagnosed and treated in accordance with the 
national management protocol disseminated 
by the National Technical Secretariat of the 
Response against Covid-19 in the DRC. 
A 64-slice TOSHIBA Aquilion CT scanner, 
commissioned in 2011, was used in all our 
patients. As acquisition parameters, we used: 
120 kV, 100 to 150 mA, 0.6 mm collimation 
and 1: 1 pitch. The thoracic field of exploration 
covered the pulmonary apex to the diaphragm 
on the axial plane taken in free breathing 
with patients in dorsal recumbency. Native 
CT images were obtained with 2.5 mm slices 
then reconstructed with 1.25 mm collimation 
using a standard algorithm, then sent to the 
Picture Archiving and Communication System 
(PACS) for analysis. CT images were evaluated 
using a lung window with a windowing level 
of -600 HU and a width of 1500 HU. The soft 
tissue window level was 40 HU and a width of 
300 HU. As for the injected examinations, a 
dose of iodinated contrast medium of 1 to 1.5 
ml/kg body weight was used after obtaining a 
renal function report (urea and creatinine) and 
hydrating the patient in any case of suspected 
pulmonary embolism. All images were stored 
in PACS and reviewed by three experienced 
thoracic radiologists. 
The following thoracic radiological patterns, 
suggestive of the diagnosis of COVID-19, 
were reviewed: (a) ground-glass opacities: 



429

Vol 9  No 4 (2023)

CRP, PCT, and D-dimer as Biomarkers for Disease Severity …  

Hamdeni T et al. 

area of pulmonary parenchymal overdensity 
not obliterating the pulmonary vessels, (b) 
Crazy paving: appearance of intra- and inter-
lobular reticulations within the ground-glass 
opacities, (c) parenchymal condensations: 
zone of systematized or non-systematized 
lung parenchymal overdensity, obliterating 
the pulmonary vessels, (d) atypical covid-19 
lesions: lesions other than subpleural ground-
glass opacities, Crazy paving and systematized 
condensations (e) lesion severity was defined 
by the extent of the lesions; the latter enables 
grading of the involvement into : Covid-19 
minimal: extent of lesion <10%, Covid-19 
moderate: extent of lesion 10-25%, Covid-19 
extensive: extent of lesion 25-50%, Covid-19 
severe: extent of lesion 50-75% and Covid-19 
critical: extent of lesion >75%; (f) progression 
of pulmonary involvement was staged as 
follows: Early stage : up to the first 4 days, 
intermediate stage: 5 to 8 days, late stage: 8 
to 13 days, very late stage: beyond 14 days; 
(g) pulmonary complications were defined as 
the occurrence of pulmonary embolism and/
or acute respiratory distress syndrome; and 
(h) associated pathologies: the presence of 
pathologies other than the above-mentioned 
complications. Data Analysis was performed 
in Pyhon.
In this study, diabetes is defined as a chronic 
medical condition in which the body either 
cannot produce enough insulin or cannot 
effectively use the insulin it produces, leading 
to elevated levels of glucose in the blood. This 
definition aligns with the criteria set forth by 
the World Health Organization.18

High blood pressure (hypertension) is identified 
as a condition where the blood pressure in the 
arteries is persistently elevated. Hypertension 
is typically diagnosed when blood pressure 

readings consistently exceed 140 millimeters 
of mercury (mmHg) systolic or 90 mmHg 
diastolic, as per the guidelines of the American 
Heart Association.19 
In this study, we primarily focused on 
Hypertension (HBP) and diabetes due to their 
prevalent impact in our context. However, 
recognizing the significance of comprehensive 
patient histories, we included a category 
titled ‘other diseases’ to account of various 
medical antecedents such as obesity, malaria, 
asthma, gastritis, dyslipidemia. We believe 
that this approach ensures a holistic view of 
each patient’s health status, acknowledging the 
complexity of multiple coexisting conditions.

Statistical Analysis

This section focuses on the analytical 
methods, model configurations, and statistical 
evaluations performed on the collected data.
After completing the data cleaning process, we 
move on to partitioning the features into two 
distinct variables: a predictive variable, which 
includes biomarker or comorbidity data along 
with age, and a target variable, which contains 
the stage level data. We split then the variables 
into two distinct phases: a training phase and a 
testing phase. In the training phase, we utilize 
a portion of the data, while in the testing phase, 
we evaluate the model's performance on a 
separate subset. To ensure a reliable evaluation, 
it is recommended to choose a test phase size 
that is less than or equal to 50% of the overall 
data size.20 For instance, in our case, we opted 
for a test phase size of 30%.
The remaining portion of the data is reserved 
for the training phase, enabling the model 
to learn patterns and relationships from a 
substantial dataset. This division into training 
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and testing phases helps us assess the model's 
generalization capabilities and provides 
valuable insights into its performance.
After standardizing the data, we proceed to train 
the desired machine learning model. In this 
paper, we test eight different machine learning 
models configured for optimal performance. 
Support Vector Machine (SVM): The 
configuration used for tuning the SVM model 
is as follows: Regularization parameter is set 
for 0.01, the type of kernel used in the algorithm 
is Linear, and the tolerance parameter for the 
stopping criterion is set for 0.01. 
 K-Nearest Neighbor (KNN) with the following 
settings: the parameter to use for distance 
calculation is the Minkowski Metric with 7 
neighbors, and Uniform Weights.
The decision tree (DT) configured as follows:  
Gini impurity is used as a criterion to evaluate 
the quality of a split in a decision tree 
algorithm, the maximum depth of a tree is set 
to 1, the maximum number of features is set to 
the square root of the total number of features 
in the dataset, which allows the decision tree 
to explore a diverse range of feature subsets 
while still maintaining a reasonable level of 
randomness and avoiding overfitting, and no 
restriction on the maximum number of leaf 
nodes. 
 The Random Forest (RF) tuned with the 
following parameter settings: a maximum 
depth of 15 for each tree, a minimum of 3 
samples required to split an internal node, a 
minimum of 3 samples required to be at a leaf 
node, and a total of 5 trees in the forest. 
 The Bagging model where the parameter 
settings are as follows: each decision tree in 
the Bagging ensemble will be built using 
a random selection of 3 features from the 
dataset, each decision tree will be constructed 

using a random sample of 50 instances from 
the dataset and the Bagging ensemble will 
consist of 100 decision trees. 
 AdaBoost model, which is another ensemble 
learning method. Here's a summary of the 
parameter settings: the learning rate is set to 
0.01, and the maximum depth allowed for each 
individual decision tree within the AdaBoost 
ensemble is set to 3 which should limit the 
complexity of the weak learners, prevent 
overfitting and promote generalization, five 
weak learners are considered. 
Gradient Boosting (GBM) model21 is fine-
tuned as follows: the learning rate is set to 
0.01, Stagewise Additive Modeling using 
a Multiclass Exponential loss function 
(SAMME) is used; an algorithm that updates 
the weights of the weak learners based on the 
exponential loss function, 5 weak learners 
are trained sequentially to minimize the loss 
function and improve the overall performance 
of the model.
XGBoost model, which is an optimized 
implementation of GBM: the learning rate 
is now set to 10-5. A smaller learning rate 
typically leads to slower convergence but 
can improve the model's generalization. 
The maximum depth is set to 4. The number 
of boosting rounds is set to 10. Each round 
focuses on correcting the mistakes made by 
the previous trees and improves the model's 
predictive performance. The minimum sum 
of instance weights needed in a child node 
to further partition the tree during the tree-
building process is configured as 2.  
By adjusting these parameters, we have 
controlled the trade-off between bias 
and variance, the learning process and 
the complexity ultimately influencing its 
performance and generalization ability. The 



431

Vol 9  No 4 (2023)

CRP, PCT, and D-dimer as Biomarkers for Disease Severity …  

Hamdeni T et al. 

results and the performance of each model are 
detailed in Results section 4.
To detect potential overfitting, we have 
compared the accuracy of the model in the 
test phase with its performance in the training 
phase. By calculating the difference between 
the two accuracy values, we can determine 
if there is a significant gap. If we observe a 
substantial difference in accuracy or notice a 
significant divergence between the curves, 
it indicates the presence of overfitting in the 
model. This means that the model has learned 
the training data too well, resulting in poor 
generalization to new, unseen data. Detecting 
overfitting is crucial to ensure the reliability 
and effectiveness of the machine learning 
model. K-fold cross-validation is also used to 
assess the model's performance on multiple 
subsets of the data. This has also helped to 
detect overfitting by evaluating the model's 
generalization ability across different data 
partitions.

Results

Table 1 provides a summary of the study 
population's characteristics, including 
demographics, comorbidities, biomarkers, and 
disease severity. It gives an overview of the age 
distribution, gender representation, prevalence 
of comorbidities such as high blood pressure 
(HBP) and diabetes, values of biomarkers 
such as D-dimer, Polymerase Chain Reaction 
(PCR), Procalcitonin (PCT), and C-Reactive 
Protein (CRP), as well as the distribution of 
disease severity stages. The table provides a 
snapshot of the study population's profile and 
helps understand the characteristics of the 
individuals included in the study. 

Table 1. Characteristics of the study population overall
Median (IQR ) or N (%)

Demographics
Age (y) 52 (41-61)
Male 209 (65 %)

Comorbidities
HBP 89 (26%)
Diabetes 36 (11 %)
Other diseases 61 (18 %)
NTR 153 (45 %)

Biomarkers
D-dimer 603.07 (310.98 - 1247.97)
PCR- positive 146 (63 %)
PCT 0.08 (0.05 - 0.23)
CRP 27.5 (7.3 - 83.0)

Disease severity
Stage 1 179 (53.6%)
Stage 2 124 (37%)
Stage 3 28 (08.4 %)
Stage 4 3 (1%)

IQR, Interquartile range; HBP, high blood pressure; 
NTR, Nothing to report; PCR, Polymerase chain 
reaction; PCT, Procalcitonin; CRP,C-reactive proteine; 

Table 2 presents the characteristics of the study 
population categorized by disease severity. 
The study population's age distribution varies 
across different disease severity stages. The 
median age increases as the disease severity 
progresses, with higher medians observed in 
Stage 2 and Stages 3 & 4 compared to Stage 1.
The table also provides information on 
the gender distribution among the study 
population, indicating the number and 
percentage of males in each disease severity 
stage. The proportion of males differs among 
disease severity stages. Stage 2 has a higher 
percentage of males compared to Stage 1 and 
Stages 3 & 4. However, the difference is not 
statistically significant based on the chi-square 
test (p-value > 0.05).
Moving on to comorbidities, the table presents 
the prevalence of specific conditions such 
as HBP, Diabetes, Other diseases, and NTR 
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Table 2. Characteristics of the study population according to their disease severity

Stage 1 Stage 2 Stages 3 & 4 Chi-
square(df) P-value CvM

Demographics
Age (y) (continuous) 50 (39-58) 53 (44-63) 60 (48- 68)
Age (y) (categorical)

<20, N=5 (1.49%) 4 (1.20%) 1 (0.30%) 0

22.9983 (12.0) 0.0277 0.1520
20-40, N=64 (19.05%) 41 (12.35%) 21 (6.33%) 1 (0.3%)
40-60, N=169 (50.30%) 96 (28.92%) 58 (17.47%) 13 (3.91%)
60-80, N=94 (27.98%) 36 (10.84%) 42 (12.65%) 15 (4.22%)
>80, N=4 (1.19%) 1 (0.30%) 2 (0.60%) 1 (0.30%)

Sexe (Male) 101 (56.7%) 85 (68.5%) 21 (67.7%) 6.4559 (3.0) 0.0914 0.1392

Comorbidities
HBP 42 (23.4%) 34 (27.4%) 11 (35.5%) 5.7122 (3.0) 0.1265 0.1308
Diabetes 14 (7%) 15 (12%) 7 (22.6%) 6.7414 (3.0) 0.0806 0.1421
Other diseases 40 (22.5%) 30 (24.2%) 9 (30%) 4.0553 (3.0) 0.2556 0.1102
NTR 84 (55.2%) 58 (38.15%) 10 (6.6%) 2.4218 (3.0) 0.4896 0.0852

Biomarkers
D-dimer (continuous) 481.1 

(256.5-878.4)
597.6 

(329.5-1130.8)
1836.9 

(684.6-2251.2)

D-dimer (categorical)
Positive D-dimer, N=102 
(57.95%) 41 (23.3%) 42 (23.89%) 19 (9.09%)

15.1502 (3.0) 0.0017 0.2934Negative D-dimer, N=75 
(42.05%) 45 (25.57%) 28 (15.91%) 1 (0.57%)

PCR 81 (62.8%) 51 (63.0%) 13 (59.1%) 1.6921 (3.0) 0.6387 0.0854
PCT (continuous) 0.07 (004-0.16) 008 (0.06-0.22) 0.26 (0.0975-0.44)

PCT (categorical)
Positive PCT, N=49 
(58.33%)

11 
(13.10%)

12 
(14.29%)

12 
(13.10%) 9.3159 (3.0) 0.0254 0.3330Negative PCT, N=35 

(41.67%)
22 

(26.19%)
23 

(27.38%)
4 

(4.76%)
CRP (continuous) 13.5 

(4.95-42.85)
47.3 

(17.2-111.1)
120.6

(52.15-194.2)
CRP (categorical)

Positive CRP, N=133 
(80.61%) 56 (33.94%) 59 (35.76%) 18 (10.91%)

9.6221 (3.0) 0.0221 0.2415Negative CRP, N= 32 
(19.39%) 23 (13.94%) 8 (4.85%) 1 (0.61%)

df, Degree of freedom; CvM, Cramér-von mises statistical test

(Nothing to Report) for each disease severity 
stage. The numbers and percentages are 
provided, highlighting the prevalence of these 
comorbidities within the different stages. HBP 
shows a slight increase as disease severity 
progresses, while Diabetes and Other diseases 
have a higher prevalence in Stages 3 & 4 
compared to other stages. The NTR category 

(Nothing to Report) shows a decreasing trend 
as disease severity increases. 
Table 2 provides information on biomarkers 
and their association with disease severity 
stages in the study population. For D-dimer, 
the median levels show an increasing trend as 
disease severity progresses. The proportion of 
positive D-dimer cases also varies significantly 
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Table 3. Predictive performance of COVID-19 severity
Predictive model Accuracy Sensitivity

SVM 0.9086 0.8725

KNN 0.8829 0.8720

Decision Tree 0.8553 0.8140

Random Forest 0.9056 0.8674

Bagging 0.8908 0.8725

AdaBoost 0.8938 0.8594

GBM 0.8791 0.8137

XGBoost 0.9085 0.8235

SVM, Support vector machine; KNN, K-Nearest neighbor; GBM, Gradient boosting

among different disease severity stages.
Table 3 presents the predictive performance 
of various machine learning models used 
to predict COVID-19 severity based on 
biomarkers. It includes metrics such as 
accuracy that measure the overall correctness 
of the model in predicting disease severity and 
sensitivity or true positive rate, that measures 
the model’s ability to correctly identify severe 
COVID-19 cases. The table compares the 
performance of SVM, KNN, DT, RF, Bagging, 
AdaBoost, GBM and XGBoost, which have 
been fine-tuned as described earlier in the 
previous section.

Discussion

Regarding Polymerase Chain Reaction 
(PCR), there is no significant variation in the 
percentage of positive results across disease 
severity stages.
As for Procalcitonin (PCT), the median 
levels demonstrate an increasing pattern with 
advancing disease severity. The proportion of 
positive PCT cases also differs significantly 
across disease severity stages.
The obtained results underscore the utility of 
C-Reactive Protein (CRP) as it shows higher 
median levels as disease severity advances. 

The proportion of positive CRP cases 
varies significantly among different disease 
severity stages. This observed trend aligns 
with the study by Tan et al.13 that focuses on 
the correlation between CRP levels and the 
severity of COVID-19, evidenced through 
computed tomography (CT) findings. They 
discovered that CRP levels were significantly 
higher in patients with severe COVID-19 from 
the initial stages, predating notable changes in 
CT images. This suggests that CRP can serve as 
an early biomarker for predicting COVID-19 
severity. 
These findings suggest that biomarkers such 
as D-dimer, PCT, and CRP could potentially 
serve as indicators of disease severity in the 
study population. However, further analysis 
and interpretation of the detailed values and 
statistical tests are necessary to establish 
stronger associations between these biomarkers 
and disease severity. 
Therefore, to further investigate the associations 
of these factors across different stages of 
disease severity, we suggest focusing on the 
predictive performance of various machine 
learning models for COVID-19 severity. 
Table 3 presents the predictive performance 
measures, including accuracy and sensitivity, 
for each model.
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Among the models evaluated, SVM and 
XGBoost demonstrate the highest accuracy 
rates of 0.9086 and 0.9085, respectively, 
indicating their effectiveness in predicting 
COVID-19 severity. KNN, Random Forest, 
and Bagging also exhibit relatively high 
accuracy rates, ranging from 0.8829 to 0.9056.
These results are in harmony with those 
of Ikemura et al.22 that utilized automated 
machine learning to develop models predicting 
COVID-19 patient mortality, demonstrating 
their efficiency in generating high-performing, 
interpretable models for clinical decision 
support. The best models identified were 
based on Gradient Boosting Machine (GBM) 
and Extreme Gradient Boosting (XGBoost). 
We highlight then the potential of tree-based 
algorithms over deep learning for analyzing 
clinical data.
We explain the outperformance of tree-based 
algorithms by the fact that can naturally 
handle heterogeneous data (which is the case 
of our data) without the need for extensive 
preprocessing. This can also be explained by 
the non-linear relationships between features 
and outcomes that tree-based models excel at 
capturing,
 This is also confirmed by Xiong et al.23 where 
also a tree-based algorithm showed great 
performance as Random Forest outperformed 
with high AUC value.
In terms of sensitivity, SVM and Bagging 
achieve the highest values of 0.8725, closely 
followed by KNN with a sensitivity of 0.8720. 
These models demonstrate the ability to 
correctly identify a significant proportion 
of severe COVID-19 cases. On the other 
hand, Decision Tree, AdaBoost, and Gradient 
Boosting show relatively lower accuracy 
rates, suggesting potential limitations in 

their predictive performance for COVID-19 
severity.
Based on these findings, SVM, KNN, Random 
Forest, and XGBoost appear to be the most 
promising models for predicting COVID-19 
severity in the study population.

Conclusion

In this study, we investigated the potential 
of C-reactive protein (CRP), procalcitonin 
(PCT), and D-dimer as biomarkers for disease 
severity in COVID-19 patients in Kinshasa, 
Democratic Republic of Congo. Our findings 
demonstrated that CRP, PCT, and D-dimer 
levels were significantly higher in severe cases 
compared to non-severe cases. The median 
levels of these biomarkers varied across 
different disease severity stages, indicating their 
potential as indicators of disease progression. 
Additionally, machine learning methods were 
employed to predict disease severity based on 
these biomarkers, achieving high accuracy.
These results suggest that CRP, PCT, and 
D-dimer can serve as valuable biomarkers 
for identifying severe COVID-19 cases 
in Kinshasa. The use of these biomarkers 
in clinical practice can aid healthcare 
professionals in making informed decisions 
about patient management and improve 
clinical outcomes. However, further research 
is needed to validate these findings in larger 
and more diverse populations. The integration 
of biomarker-based assessments into clinical 
protocols has the potential to enhance risk 
stratification and guide personalized treatment 
strategies for COVID-19 patients.
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