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Introduction: Analyzing long term survivors such as diabetic patients can't be done using the usual survival 
models. One approach to analyze it is using defective distribution that doesn't force a pre-assumption 
of cure fraction to the model. To study more than one random variable interacting together, multivariate 
distributions may be used. However, most of multivariate distributions have complicated forms, which 
make the computations difficult. Besides, it may be hard to find a multivariate distribution that fits the data 
properly, especially in health care field. To get over this problem, one can use copula approach. In literature, 
to the best of our knowledge, only one paper handled copula defective models and didn't consider the effect 
of covariates. In this paper, we take into consideration not only existed covariates but also unobserved ones 
by including frailty term. 
Methods: Two new models are introduced. The first model, used Gumbel copula to take the dependence 
into consideration together with the observed covariates. The second one take into consideration not only the 
dependence but also the unobserved covariates by integrating frailty term in to the model. 
Results: A diabetic retinopathy data is analyzed. The two models indicated the existence of long-term 
survivals through negative parameters without the need of pre-assuming the existence of it. Including frailty 
term to the model helped in capturing more dependence between the variables. We compared the results 
using goodness of fit methods, and the results suggested that the model with frailty term is the best to be used. 
Conclusion: The two introduced models correctly detected the existence of cure fraction with less estimated 
parameters than that in mixture cure fraction models. Also, it has the advantage of not pre-assuming the 
existence of cure fraction to the model. comparing both models, the model with frailty term fitted the data 
better.
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Introduction  

Models in survival analysis are based on the 
assumption that all units in the study will face 
the event of interest. However, in some cases 
this assumption is violated. For example, in 

medical studies, some patients are cured and 
never face the recurrence of a certain disease 
like melanoma. In economics, unemployed 
person may never find a job. In finance, some 
banks may never face bankrupt. In demography, 
one may never get married and may never get 
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a first child. (For more examples see, Amico 
and Keilegom).1 The proportion of individuals 
that are susceptible to the event of interest 
are called cured. To analyze this type of data, 
different models that take into consideration 
the existence of cure portion are used. 
One common approach is mixture cure fraction 
model. It was first introduced by Boag2 to 
analyze breast cancer data. In this approach, the 
survival function is rewritten as S(t)=p+(1-p) 
S*(t), such that p is the cure proportion and 
S*(t) is the survival function of susceptible 
subjects. This cure model has since been 
applied by many using different distributions. 
For example, Farewell,3 Yamaguchi,4 Kannan et 
al,5, Martinez et al,6 Swain et al7 and Omer et al8 
used Weibull, generalized Gamma, generalized 
exponential, generalized modified Weibull, 
generalized Gompertz and exponentiated 
Weibull exponential, respectively.
An alternative approach to handle cure fraction 
is to use defective distributions which naturally 
becomes a cure rate model when changing the 
usual domain of its parameters. Because of this 
change, the survival function converges to a 
value pϵ(0,1) which is written as function in 
the estimated parameters of the distribution. 
Hence, it has the advantage of estimating fewer 
number of parameters. Also, there is no need 
for pre-assuming the existence of cure fraction 
in the model, the parameter estimates will tell 
whether or not there is a proportion of cured 
elements. One of the most commonly used 
defective distribution is Gompertz model, it 
was first introduced by Cantor and Shuster9 to 
analyze survival time for leukemia patients. 
Gieser et al10 extended the model to include 
covariates. 
Other defective distributions were introduced. 
For example, Rocha et al11 used the Marshall-

Olkin class of distributions to generalize the 
defective Gompertz and defective inverse 
Gaussian distributions. Rocha et al12 derived the 
Kumaraswamy Gompertz and Kumaraswamy 
inverse Gaussian distributions. Rocha et al13 
used the Marashall-Olkin family to introduce 
ten new defective distributions. Martinez 
and Achcar14 presented the defective Dagum 
distribution. Hamdeni and Gasmi15 introduced 
the Marshall–Olkin generalized defective 
Gompertz distribution. 
In both cure fraction approaches; one may be 
interested in analyzing two lifetime variables. 
Assuming independence between the variables 
are not always realistic. For example, studying 
of blindness in the left and right eye, analyzing 
the failure time of the left and right kidney 
and studying the lifetime of a twine-engine 
plane. To account for dependency between 
different lifetime variables, one may use 
multivariate lifetime distributions. However, 
most of multivariate lifetime distributions 
have complicated forms. This, make it difficult 
to find a proper distribution to fit the data. 
Also, this complexity makes the computations 
difficult. To overcome this disadvantage, 
copula approach can be used. The copula is a 
function that links the multivariate distributions 
to their one-dimensional marginal distributions 
through a link function. It has the advantage 
of combining both ease of computation and 
proper fit.
A generalization for the univariate mixture cure 
fraction model using copula is introduced. For 
example, Martinez and Arachar16 considered 
the Farlie Gumbel Morgenstern, Clayton and 
Gumbel Barnett copulas to study invasive 
cervical cancer data. 
Archar et al17 considered Farlie Gumbel 
Morgenstern and Gumbel-Barnett copulas to 
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analyze blindness data. Coelho-Barros et al18 
applied bivariate Weibull using two different 
copulas to analyze diabetic retinopathy study. 
Peres et al19 applied a comparison study using 
fifteen different copulas and three real datasets. 
For defective models, recently, Peres et al20 
used Clayton copula with defective Gompertz 
distribution to analyze three different datasets. 
Handling dependent lifetime data using copula 
have an implicit assumption of homogeneity 
between individuals. In statistical analysis, part 
of the heterogeneity is explainable in terms 
of observed covariates. However, individuals 
with same covariates can still have different 
responses, this is due to some unobserved 
factors like environmental or biological factors. 
Models which take into account the unobserved 
heterogeneity between individuals, are known 
as Copula frailty models. These models use 
a random variable that represents the non-
observed information. See for example, Wang 
et al21 and Lin et al22. 
For defective models, recently Peres et al20 
considered the case of dependent lifetime 
models through copula. However, they didn't 
take into consideration the effect of covariates. 
Here, we present two models, one that takes 
into consideration the effect of observed 
covariates. The second one considers the 
heterogeneity effect through frailty term. Both 
models take into consideration the association 
between lifetime variables through copula. 
Also, they detect the existence of cure fraction 
without pre-assuming this by using defective 
distributions. 

Methods 

We introduced two new models, one that 
take into consideration the effect of observed 

covariates. The second one considers the effect 
of non-observed covariates through frailty 
term. 
We will first explain the meaning of defective 
distributions and copula frailty models. Then 
illustrate the derivation of the two introduced 
models. 

Defective Distributions

A distribution is called defective if the survival 
function approaches a value p ϵ (0,1) when we 
change the domain of its parameters. It has the 
advantage of not pre-assuming the existence 
of cure fraction in the model. If the estimation 
procedure presents a value out of the usual 
range of parameters, then the cure fraction 
exists. The proportion of the cured subjects is 
obtained by calculating the limit of survival 
function using the estimated parameters. 
Accordingly, defective distributions have fewer 
number of estimated parameters compared to 
that of mixture cure fraction models where p is 
directly estimated. 
Gompertz distribution is one of the most 
commonly used defective model. It was 
introduced by Cantor and Shuster9 to analyze 
medical data. It was extended by Gieser et al10 to 
take into consideration the effect of covariates. 
Dos-Santos et al23 estimated the parameters 
using Bayesian approach and compared it with 
maximum likelihood approach. The Gompertz 
distribution has a simple form with two positive 
parameters. For negative values of the shape 
parameter, the distribution becomes defective. 
The probability density, survival and hazard 
functions for the Gompertz distribution are, 
respectively, given by 
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The distribution becomes defective for negative 
values of the parameter α. The cure proportion 
is calculated as follows

( )
( 1)

lim  lim
tb be

t t
S t e e p

α

α α
−

−

→∞ →∞
= = =

This form of the Gompertz distribution handles 
only the situation when one random variable is 
of interest or independence between events of 
interest is assumed. Once dependency between 
two lifetime events is considered, bivariate 
distributions are used. Copula is one of the 
most widely used approaches to construct 
bivariate distributions taking into consideration 
the association between events. This will be 
explained in more details in the next section.

Copula frailty

Copula is a function that connects marginal 
distributions to define a bivariate distribution. 
There are two main steps to define the required 
bivariate distribution. First, the marginal 
distributions should be properly defined. 
Second, select a suitable copula to define the 
dependence structure. Nelsen24 illustrated that 
different copulas with the same marginals 
resulted in different dependence structure. 
There are different types of copulas, the most 
commonly used one is Archimedean copula. 
This is due to a number of reasons, the ease 
with which they can be constructed, the great 
variety of families of copulas and many useful 
properties possessed by the members of this 

class. (For more details see, Nelsen24). 
By using copula, one take into consideration 
the dependence between different lifetime 
variables. Also, for a more precise analysis of 
the survival function, one needs to take into 
consideration the effect of other related factors 
by encountering observed covariates (x) into the 
model. However, we may have two individuals 
with the same observed covariate but with 
different lifetimes. This is due to the effect of 
some unobserved factors like environmental 
and biological ones. This can be taken into 
consideration by adding frailty term into the 
model which can be explained as follows

( )
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β
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Cθ: Is the selected copula function,
R0(t): Is the cumulative hazard function of the 
selected marginal.
u: Is the frailty term. 
For defective distributions, to the best of our 
knowledge, only peres et al20 considered the 
dependency between time to events through 
copula. However, they didn't take into 
consideration neither the observed covariates 
nor the frailty effects. In the next section, 
we will generalize the model to take both 
effects into consideration but using different 
Archimedean copula.

Model 

Two models are developed to generalize 
the existing bivariate defective model in the 
literature. One with only observed covariates 
and the other including both unobserved 
and observed. Gumbel copula and marginal 
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survival function from Gompertz distribution 
are considered in both derived models.

Copula model without frailty

We used in our model Gumbel copula with the 
following formula

( ) ( )( ) ( )( )
1

, exp ln ln ,C s v s v
θ θ θ

θ

   = − − + −    

where
θ: dependence parameter.
Now, we rewrite our model in terms of Gumbel 
copula
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However, Gompertz model has an identifiability 
problem between parameters b and eβ. To 
overcome this problem, we set b=1. (For more 
details, see Scudilio et al25). 
In survival analysis, failure time for some 
units are not observed. This portion is 
referred to as censored observations. Here, we 
considered right random censoring. To take 
into consideration the censoring effect, the 
likelihood function for n  observations has the 
following form
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We used Kendall's tau to measure the 
dependency between T1 and T2, it has the 
following formula

1.θ
θτ
θ
−

=

Copula model with frailty 

To allow for heterogeneity, we encountered 
unobserved frailty term u into our statistical 
model. Here, we consider gamma distribution 
with the following probability density function

( )
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such that η represents the degree of 
heterogeneity. 
The combination of Gumbel Copula and 
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gamma frailty is selected to reach a closed 
formula after integrating out the frailty term 
(see, Wang et al21 for more details). Now, we 
write our model in terms of Gumbel copula 
after adding the frailty term
( )
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Model (2) is not applicable as it includes 
unobserved term (u). To get the joint survival 
function we integrate out the frailty term as 
follows
( )
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= ∫  using 
change of variables technique, the result is 
reached.
Now, to account for censoring, we will derive 
the components of the likelihood function (1) 
as follows
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We used Kendall's tau to measure the 
dependency between T1 and T2. Using the 
properties of Archimedean copula, it is found 
to be

( ),
21 .
2θ ητ

η θ
= −

+

Proof
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θ η
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matching the same result as Wang et al.21

To study the effect of including frailty term, 
we compared this model with the one using 
only observed covariates and the one with no 
covariates. We applied it into real dataset to test 
its applicability.
Here, we analyze a diabetic retinopathy data 
which was first introduced by Huster et al.26 It 
consists of 197 diabetic patients. Each patient 
had one eye randomized to laser treatment 
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and the other eye received no treatment. In 
our analysis, T1 corresponds to the time up to 
blindness for the control eye, and T2 is the time 
up to blindness for treatment eye. Censoring 
was caused by death, dropout, or end of the 
study. Two covariates are included in the 
analysis
• x1: age of diagnoses of diabetes.
• x2: type of diabetes.

Results 

The age at diagnosis of diabetes for patients 
ranges from 1 till 58 years. The mean time 
for control eye is 34.2 months with 43.6% 
censoring. While for treated eye, the mean time 
is 36.2 months with 35.02% censoring. 
The Kaplan-Meier survival curve (Figure 1) 
has a long plateau at the end, indicating the 
possibility of cured fraction in the model. The 
two graphs for treated and non-treated groups 
looks similar and they flattened out at the same 

time. However, the survival curve for treated 
eye is higher than that for non-treated one.
We used R package and nlm function to 
maximize the logarithm of the likelihood 
function (equation (1)) for both models. Model 1 
(M1) corresponds to the one with only observed 
covariates, model 2 (M2) corresponds to the 
frailty one, while model 3 (M3) corresponds 
to the model without covariates or frailty term. 
Maximum likelihood estimates (ML) and 95% 
confidence intervals are illustrated in Table 1. 
It can be seen that the estimates for α1 and α2 
are negative with upper confidence limit less 
than zero, accordingly all models suggest the 
existence of cure fraction. 
Cure fractions for control eye (p1) and treatment 
eye (p2) are calculated using the following 
equation and presented in Table 2. 

1

,    1, 2.j
jp e jα= =

It can be seen from Table 2, that models M1 
and M2 resulted in cure fraction estimates 

Figure 1. Kaplan-Meier survival curve for diabetic patients
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around 0.5 for control eye, while model M3 has 
lower estimate. All Models has higher estimate 
of cure fraction for treatment eye than that for 
control eye. 
The heterogeneity variance is estimated as            
ˆ 0.58η =  and the CI does not include zero 

which illustrates the significance of the frailty 
term. adding frailty term to the model resulted 
in capturing more association between T1  
and T2 (higher value for Kendall's tau (Table 
3)). This is logical because the data has no 
covariates for environmental conditions or 
hospitals the patients selected from. 
The estimators β11 and β21 correspond to the age 
covariate for control eye and treatment eye, 
respectively. While, the estimators β12 and β22 
correspond to type of diabetes for control eye 
and treatment eye, respectively. It can be seen 
that the 95% CI doesn’t include zero, which 

illustrates that the covariates are significant in 
both models.  
Comparing the models M1 and M2  using 
different information criteria. From Table 
3, the results suggest that the model with 
frailty term provides a better fit (i.e. lower 
value for information criteria) for the data. 
Although Model M3 has the lowest values, 
we don’t recommend the use of this model. 
The assumption of not adding covariates is 
unrealistic. 

Discussion

Analyzing data with long term survivors is of 
great importance. The usual survival data with 
the hidden assumption of the occurrence of the 
event of interest to all study units can't be used. 
From previous studies, some diseases like 

Table 1. The maximum likelihood estimates
α1 α2 θ η β11 β12 β21 β22

M1 ML -1.752 -2.078 1.170 - 0.918 0.274 0.548 0.285
CI (-2.26, -1.24) (-2.71, -1.44) (1.02,1.32) - (0.54,1.30) (0.004,0.54) (0.15,0.95) (0.008,0.56)

M2 ML -1.478 -1.664 1.031 0.578 0.814 0.375 0.570 0.346
CI (-1.91,-1.05) (-2.12,-1.21) (0.87,1.19) (0.16,0.99) (0.34,1.29) (0.04,0.71) (0.09,1.05) (0.01,0.68)

M3 ML -0.699 -1.489 1.139 - - - - -
CI (-1.34, -0.06) (-2.24, -0.74) (1.02, 1.26) - - - - -

Table 2. Cure fraction estimates
P1 P2

M1 ML 0.565 0.618
M2 ML 0.508 0.548
M3 ML 0.239 0.511

Table 3. Information Criteria and Kendal’s tau 
Model AIC BIC CAIC HQIC τ

M1 -822.50 -796.23 -796.19 -825.18 0.145
M2 -824.20 -797.94 -797.90 -826.89 0.248
M3 -829.37 -819.52 -819.50 -830.37 0.122



333

Vol 9  No 3 (2023)Abuelamayem O et al. 

Analysis of Copula Frailty Defective Models in Presence of Cure Fraction

diabetic, cancer, melanoma and Covid 19 were 
most likely to include long term survivors. 
Accordingly, accurate analysis with minimum 
number of parameters for this data type is 
very important. Our aim in this study was to 
accurately detect the existence of long-term 
survivors through the data without pre-forcing 
its existence to the model, and examining 
the effect of covariates by considering the 
association between events.
The study conducted by Peres etal20 analyzed 
long term survivors using copula approach and 
defective distributions. However, they ignored 
the effect of covariates on survival function.  
In our study, we introduced two models both 
taking into consideration the dependence effect 
using copula. One that take into consideration 
the effect of observed covariates. The second 
model analyzed the effect of unobserved 
covariates by adding latency term to the model. 
The results of the study illustrated that both 
models correctly detect the existence of cure 
fraction in the model. The one with latency 
term provided better fit for the data. 
It is suggested for further studies to take into 
consideration any pre-existing information 
about the parameters. This can be done using 
Bayesian technique. 

Conclusion

In this paper, we introduced two generalization 
for copula defective model existed in literature. 
The first model takes into consideration the 
effect of observed covariates. The second 
model accounts for unobserved covariates by 
adding frailty term. Both models detect the 
existence of cure fraction with less estimated 
parameters than that in mixture cure fraction 
models. Also, it has the advantage of not pre-

assuming the existence of cure fraction to the 
model. comparing both models, the model with 
frailty fitted the data better.
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