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Introduction: The mixed effects logistic regression model is a common model for analysing correlated binary 
data as longitudinal data. The between and within subject variances are typically considered to be homogeneous 
but longitudinal data often show heterogeneity in these variances. This study proposes a Bayesian mixed 
effects location scale model to accommodate heteroscedasticity in binary data analysis. 
Methods: This study was carried out in two stages; first, the simulation study was used to evaluate the 
accuracy of the proposed model with the Bayesian approach and then the proposed model was applied to a real 
data. In simulation study, the data were generated from the mixed effects location scale model with different 
correlations between the random location effect and random scale effect and different sample sizes. In order 
to evaluate the accuracy of the estimations, the Root Mean Square Error, bias and Coverage Probability were 
calculated and the deviance information criterion was used to select the appropriate model. At the end we 
utilized this model to analyse uric acid levels of patients with haematological disorders.
Results: The simulation results show the accuracy of model parameter estimates as well as the correlation 
between random location and scale effects. They also display that if a random scale effect is present in the data, 
it should be accounted for in model. Otherwise, the model is forced to assign the within subject variation due 
to these subject random effects to the error term. The results of real data are also in line with this. The odds of 
having normal UA levels increases by a factor of 26% per week. Due to the positive value of the covariance 
parameter, patients with higher mean of UA levels show higher variation in UA levels. Furthermore, the 
significance of the covariates in the between subject and within subject variances model, as well as the 
significance of the random scale variance determines the heterogeneity across subjects.
Conclusion: Bayesian mixed effects location scale model provides a useful tool for analysing correlated 
binary data with heteroscedasticity because it considers data correlation and modelling mean and variance 
simultaneously.  Furthermore, it improves the accuracy of statistical inference in longitudinal studies compared 
to classic mixed effects models.
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Introduction  

Longitudinal data with binary response 
variables mostly occur in medical 
investigations, especially in clinical trials. In 
binary longitudinal data, the recurrence of 
outcome is a subject that should be considered 
and the relationship between covariates and 
the multiple incidents of the outcome is of 
interest. Analysis of such data is a challenging 
issue as some individuals are more prone to 
recurrences than others, and, therefore, the 
response variable shows positively correlated 
repeated measures.1

There are several approaches for the analysis 
of correlated longitudinal categorical data. 
Marginal modeling as one of these approaches 
provides inferences for parameters averaged 
over the whole population. The usual method 
for parameter estimation in marginal models 
is the generalized estimating equations 
(GEE).2,3 Using random effects modeling as 
another approach provides inferences about 
the variability between respondents.4,5 Markov 
(transition) models are other approaches to 
evaluate the reasons for the change of the 
responses. The maximum likelihood method 
is often used to estimate the parameters of 
both the random effects and Markov models.6,7 
Tang et al. used Binary logistic regression 
to analyze China Health and Retirement 
Longitudinal Study data sets in order to 
explore the association of midday napping 
with hypertension, and the 3-step method 
was used to test the mediation effect of BMI. 
They concluded that BMI serves as a mediator 
and that midday naps increase the risk of 
hypertension.8 Iddris et al evaluated the effect 
of gender on blood pressure (BP) over the 
three BP measurements adjusting for other risk 

factors of BP in Ghana by using the logistic 
mixed effects model.9

The mixed effects logistic regression models, 
as an extension of generalized linear models )
GLM), are the most common statistical tools 
for analyzing binary response longitudinal 
data.10,11 The observations for the same 
individuals are correlated at different times 
and these models consider these correlations 
by including one or several random effects.4 
The between-subject (BS) and within-subject 
(WS) variances which refer to random effects 
and error variances, respectively, are usually 
assumed to be homogeneous across subjects. 
However, sometimes this assumption is not 
supported by the data.12 Examples of error 
variance which is systematically related to the 
explanatory variables are available. Carroll 
and Ruppert defined the idea of modeling 
the error variance in terms of explanatory 
variables.13 Balazs, Hidegkuti, and De Boeck 
tried to evaluate participant heterogeneity in 
item-response data using a logistic regression 
model in which heterogeneity emerged as a 
latent random term added to the main effects 
and covariate dependent terms.14

Hedeker et al. introduced the mixed effects 
location scale (LS) model in 2006; this model 
is a useful approach for joint modeling of 
mean and variance structure. They tried to 
include the covariates in both WS and BS 
variances to account the heteroscedasticity 
and model their influences on both variation 
sources. Moreover, to capture heterogeneity in 
random errors, they included a random term at 
subject level into the WS variance modeling. 
The random location and scale effects can 
characterize the subject’s influence on both 
mean (location) and variability (scale) of the 
longitudinal outcome; the random location and 
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scale effects are correlated to some extent.15 
The aforesaid modeling heteroscedasticity 
approaches have been also evaluated in the 
Bayesian framework. Hoff and Niu introduced 
a method to parametrize the covariance 
matrix of a multivariate response vector as a 
parsimonious quadratic function of explanatory 
variables. They used the EM-algorithm and 
MCMC approximation via Gibbs sampling 
to explain and clarify parameter estimation.16 
Rast et al. modeled the individual differences 
in level by Bayesian approach and modified 
using the mixed-effects location scale 
model proposed by Hedeker et al.17 Efficient 
estimation of the regression parameters can 
be the result of modeling heteroscedasticity; it 
can cause more precise predictive inferences 
for some units and less for others compared to 
models assuming variance homogeneity that 
yield the same accuracy for all observations.12 
In this paper, we aimed to generalize the 
approach developed by Hedeker et al. to the 
binary outcomes by including the random 
effects at both the location and scale levels 
within a Bayesian framework.
The article is organized as follows: Section 2 
describes the notation and the model. Section 
3 provides a brief overview of Bayesian 
estimation and the model fit criteria. The 
analysis of real data is presented in Section 4 
and Section 5 shows the results of a simulation 
study. Finally, the results are discussed in 
Section 6. 

Methods

Model description

Let Yij denotes the binary outcome (taking 
values of 0 or 1) for subject i (i=1,…,N) at time 

j ( j=1,…,ni). A common logistic mixed effects 
model can be written as:
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where Xij is a  p × 1 vector of predictor 
variables,   Zij is a subset of Xij,  β is a vector 
of fixed effects parameters corresponding to 
the predictor variables. The random subject 
effect 2(0, )

ii uu N σ  is used to account for the 
correlation between the repeated measurements 
on the same subject. In this model, 2

uσ  denotes 
the between-subjects (BS) variance. Now we 
add the scaling terms to this framework and 
introduce the mixed effects location-scale 
model for binary response data as.18
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We also used a log-linear representation to relate 
the covariates to the BS and WS variances, as 
explained in the context of heteroscedastic 
(fixed-effects) regression models,19,20 namely:
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where τ  and γ are fixed-effects parameters 
which express the degree of influence of their 
corresponding covariates, νi and Wij, on the 
BS and WS variances, respectively. If τ = γ = 
0, the classic logistic regression with random 
intercept is achieved. The BS variance is 
modeled only with subject-varying covariates 
(such as demographic characteristics like sex, 
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…) but the WS variance is modeled with both 
subject-varying and time-varying covariates 
(such as time). Since the exponential function 
guarantees a multiplicative factor for certain 
values of   and , the resulting variance will 
definitely be positive.
To consider the individuals’ heterogeneity, 
we can further extend the model by including 
random subject effects for a subject `s 
measurement error (i.e., random scale effects):

2 exp( ). (5)
ij ij iwεσ γ ω′= +

where the random subject (scale) effects ωi are 
distributed in the population of subjects with 
mean 0 and variance 2

ωσ . If the distribution of  
ωi is normal, then the WS variance, 

2log( )
ij ij iwεσ γ ω′= +

follows a log-normal distribution. A log-
normal distribution is a proper choice for 
representing variances because of its features 
such as skewed and nonnegative nature.21-23 
Model5 allows the WS variance to vary across 
subjects, beyond the effect of covariates. In this 
model, iu  is a random effect that influences the 
location or mean of the individual`s outcome 
and  is a random scale effect that influences 
an individual`s variance. Thus, the model 
with both types of random effects is called as 
mixed effects location scale model. These two 
random effects are correlated with correlation 
parameter ρuω, which indicates the degree of 
association between the random location and 
scale effects.15

Bayesian inferences

The parameter estimation is usually 
challenging in the mixed effects location scale 
model for binary data due to computational 

complexity and convergence failure. Here, 
we introduced a fully Bayesian approach to 
estimate parameters in model (2), (3), and (5). 
In this context, the Markov chain Monte Carlo 
(MCMC) procedures enabled us to sample the 
posterior distribution for each parameter and 
make inference afterwards. Figure 1 illustrates 
how Bayesian analysis brings together 
observed data with prior probabilities and a 
model to obtain the results.

Data

Results

Model

Prior 
Probabilities

Bayesian 
analysis

Figure 1. General approaches of the Bayesian methodology 

In this study, we utilized vague priors for 
fixed-effects regression coefficients using the 
normal distribution, so that, ~ (0,0.001)Nβ , 

~ (0,0.001)Nτ  and ~ (0,0.001)Nγ . Also the 
diffuse prior was specified for the inverse 
of the variance of the scale effects using the 
gamma distribution with small scale and 
shape parameters, i.e. G(0.001,0.001). 
If we suppose that the model parameters, 

{ , , }β τ γΘ = , are independent of each 
other, then the prior density function will be 
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In general, the integrals in6 do not have closed 
form. Since the numerical approximation 
of the integrals may be inaccurate, it is 
not recommended to directly calculate the 
posterior distribution from the observed data. 
An alternative approach is to use the MCMC 
procedure for sampling from posterior 
distributions, based on,6 using the Gibbs 
sampler along with the Metropolis-Hastings 
algorithm.
We implemented the proposed model using 
WinBUGS 1.4 software24 and R2WinBUGS 
package25 in R 4.3.0 software. We run the model 
for 50,000 iterations with 20,000 iterations 
for burn-in followed by 30,000 samples for 
estimates using two parallel chains. 

Model selection

Here, the deviance information criterion (DIC) 
was applied as a criterion for choosing the best 
model.26 DIC is a Bayesian version of Akaike’s 
information criterion (AIC) which has been 
commonly used for Bayesian model selection, 
especially where the posterior distributions 
of the models is obtained using the MCMC 
approach.27 For data y and model parameters 
Θ, the expression for DIC is as follows

2 ( , ) ( , )DIC D y D y= Θ − Θ

where ( , ) ( ( , ) | )D y E D y yΘ = Θ  is the 
posterior mean deviance and ( , )D y Θ  is 
the deviance at the posterior mean of Θ  , 
denoted by Θ ̅ (statistical deviance  is defined as 

D(y.Θ)=-2ln(f(y.Θ))) . The models with smaller 
values of DIC are preferred.

Results

Real data application 

To illustrate the application of the mixed effects 
location scale model for binary responses, we 
used the data from a study on 166 patients with 
hematological disorders who were admitted for 
allogeneic transplantation at Taleghani hospital, 
Tehran, Iran, between 2008 and 2018. The 
mean±SD age of the patients was 32.09±10.59 
(ranged 7 to 57 years) and patients 82(49.4%) 
were female. 
Allogeneic hematopoietic stem cell 
transplantation (allo-HSCT) rate is increasing 
nowadays throughout the world; every year 
there is about 50,000 – 60,000 transplantation.28 

Graft versus host disease (GvHD) after HSCT 
is an important complication and thus it is a 
therapeutic challenge.29 Patients undergoing 
allo-HSCT showed GVHD prevalence as 20-
60%.21 Other studies showed that the HSCT 
process changes serum uric acid (UA) levels in 
allo-HSCT.31 Also, they described the impact 
of UA levels (as a sensitive biomarker) on the 
incidence of GVHD and overall survival in 
allo-HSCT patients.32,33 
Here, our aim is to evaluate the trend of UA 
levels and to determine whether there is a 
difference between male and female patients 
in UA levels, adjusting for the patients’ age. 
Serum UA levels were measured at one and 
two weeks before allo-HSCT, the day of allo-
HSCT, one and finally two weeks after allo-
HSCT. For males, the normal range for uric 
acid biomarker is between 3.6 and 8.2, while 
this range is between 2.3 and 6.0 in females 
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(based on the determined normal range by the 
local tab). If UA level was in the normal range, 
then 1ijy = , otherwise 0ijy = .
To begin, we fitted a random-intercept logistic 
model(1) with vague priors (densities with 
high spread) using normal distribution, 

~ (0,0.001)Nβ  and Gamma distribution, 
2 ~ (0.001,0.001)u Gσ , for the inverse of random 

effect variance. In this model, we did not 
include any covariates for the variances (i.e. 
for iν  or ijw ). The patients’ sex (female=0 
and male=1) and time of measurement were 
considered as the covariates in the final model 
(adjusting for age). It should also be noted that 
the interaction between sex and time was not 
included in the final model because it had not 
significant effect.
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Next, to fit the mixed effects location scale, 
we added these covariates into the log linear 
models of the BS and WS variances (the time 
variable was not included in the BS variance 
model). We used the vague priors for fixed 
effects regression coefficients using the normal 
distr ibution, ~ (0,0.001)Nβ , ~ (0,0.001)Nγ  
and ~ (0,0.001)Nτ  as well as the Gamma 
distribution with very small scale and shape 
parameters for the inverse of the variance of 
the scale effect, 2 ~ (0.001,0.001)Gωσ .
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Table 1 shows the obtained results from fitting 

the described models. As can be seen, in the 
mixed effects model, the tendency to normal 
UA levels increases significantly from two 
weeks before allo-HSCT to two weeks after 
allo-HSCT(odds ratio (OR)=1.27). In other 
words, the odds of normal UA levels weekly 
increases by a factor of 27% in these patients. 
In addition, the estimated OR=0.51 for the sex 
variable means that odds of having normal UA 
levels in male patients was about half of the 
same odds in females.
According to the results of the mixed effects 
location scale model, in terms of the location 
modeling, the estimated odds of normal UA 
levels weekly increases by a factor of 26% in 
these patients. Also, the estimated OR=0.52 
for the sex covariate shows that odds of having 
normal UA levels in male patients was about 
half of the same odds in females. For modeling 
BS variance, the ‘sex’ effect is significant. 
Female has less BS variation than male because 
the sign for the coefficient estimates of ‘sex’ 
is positive. The WS variance was modeled via 
a log link function. Time 1( 0.24)γ = − and sex 

2 0.93)(γ =  were significant predictors of WS 
variability. The signs of the estimates showed 
that by increasing the time, the UA levels 
less varied. The random WS variance (the BS 
variance of scale) and covariance parameters 
are both highly significant. The significant 
variance of the random WS variance effect 

2
ωσ indicates that there was considerable 

heterogeneity among the patients in terms 
of their UA levels variation. The covariance 
parameter uωσ  is estimated to be positive. 
Thus, patients with higher mean of UA levels 
exhibit greater variation in UA levels. In other 
words, these results show that the BS and WS 
variances in these data are not homogeneous 
and by considering this heterogeneity, the 
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estimation of parameters will be more accurate. 

Simulation 

To evaluate the performance of the proposed 
Bayesian approach, we compared the 
estimators of the mixed effects location 
scale models with different sample sizes and 
different correlations between random location 
effect and random scale effect in terms of their 
bias, the root mean squared error(RMSE), 
and the coverage of the 95% highest density 
interval using MCMC method. 
In this context, 1000 longitudinal binary 
datasets were simulated from the proposed 
mixed effects location scale model for binary 
outcomes (2),(3), and (5) regarding four 
different sample sizes (N=50,N=100, N=300, 
N=500) each with five time points (ni=5) and 
using the following model parameters and 

covariates:
• X1 is a normally distributed covariate with 
mean 0.5 and variance 0.04. X2 is a binary 
variable taking value 1 with p=0.5 (which is 
generated from a Bernoulli distribution with 
success probability p=0.5)

• The true values for the fixed effect are set as:
• β= (-0.64,0.22,0.06)', γ= (0.1,0.07, -0.01)', 
τ= (-2.13,0.59)'.

• The correlation terms of random location 
and random scale effects are set to three 
different values (ρuω=0, ρuω=0.5, ρuω=0.9).

The BS and WS variances were permitted to vary 
between and within subjects, respectively. The 
BS variance was modeled by log-linear models 
with X1 and the WS variance was modeled by 
log-linear models with X1 and X2 including 
a random subject scale ( iω ) parameter to 
define the variability in the WS variance which 

Table 1. Mixed effects and the mixed effects location scale model with random intercept

Sub-models Parameter
Mixed effects model Mixed effects location scale model

Estimate* OR* S.D*** CI**** Estimate OR S.D CI
Location Intercept -0.76 0.48 0.41 (-1.54,-0.03) -0.74 0.47 0.35 (-1.45, -0.07)

Time 0.24 1.27 0.06 (0.10,0.34) 0.23 1.26 0.06 (0.12, 0.34)
Sex (M/F) -0.69 0.51 0.23 (-1.1, -0.30) -0.65 0.52 0.22 (-1.09, -0.21)

WSa 
variance

Intercept -1.697 0.46 (-2.58, -0.80)
Time -0.242 0.06 (-0.37,-0.11)
Sex (M/F) 0.9252 0.25 (0.45,1.42)

BSb 
variance

Intercept -2.459 1.07 (-4.08,-0.44)
Sex (M/F) 2.434 0.49 (1.64,3.98)

Scale 2
ωσ

0.6534 0.65 (0.46, 1.04)

uωσ 0.9746 0.02 (0.92, 0.99)

DIC 935 803
*Estimated posterior mean, 
**Odds ratio, 
***Standard deviation, 
****95% equal-tail credible interval
a Within Subject
b Between Subject
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is not explicated by the covariates. We used 
these simulated datasets to fit similar models 
(2),(3),(5) and the MCMC sampling schema 
that is used for the real data analysis. Table 2, 3 
and 4 shows the obtained results.
As can be seen in the results, the estimated 
parameters of the proposed model and the 
scale parameters are nearly unbiased with 
small RMSEs (an estimate of the model's 

ability to predict the target value (accuracy)). 
Also, the coverage (the probability that a 
highest density interval will include the true 
value of interest) of the 95% highest density 
interval for all of the parameters was above 
90% in different scenarios. The suggested 
model provided unbiased estimates of the 
true values of the correlation terms of random 
location and random scale effects in different 

Table 2. Location scale mixed effects model with random intercept based on simulation with ρuω=0.

Su
b 

m
od

el

Pa
ra

m
et

er

Tr
ue

  v
al

ue

N=50 N=100 N=300 N=500

Bi
as

Co
ve

ra
ge

RM
SE

Bi
as

Co
ve

ra
ge

RM
SE

Bi
as

Co
ve

ra
ge

RM
SE

Bi
as

Co
ve

ra
ge

R
M

SE

Lo
ca

tio
n β0 -0.64 -0.100 0.89 0.125 -0.096 0.91 0.115 -0.068 0.93 0.092 -0.041 0.93 0.083

β1 0.22 0.023 0.91 0.098 0.021 0.92 0.078 0.017 0.90 0.051 0.018 0.92 0.048
β2 0.06 0.021 0.94 0.191 0.021 0.94 0.136 0.019 0.96 0.100 0.016 0.97 0.081

Sc
al

e

w0 0.1 0.034 0.91 0.145 0.032 0.91 0.107 0.031 0.93 0.081 0.029 0.94 0.078
w1 0.07 0.028 0.88 0.074 0.024 0.89 0.094 0.015 0.91 0.057 0.013 0.92 0.025
w2 -0.01 -0.022 0.90 0.188 -0.017 0.94 0.158 0.014 0.93 0.085 0.011 0.97 0.009
ν0 -2.13 -0.093 0.90 0.219 -0.089 0.89 0.182 -0.080 0.91 0.102 -0.057 0.93 0.078
ν1 0.59 0.178 0.89 0.227 0.172 0.90 0.192 0.153 0.92 0.187 0.125 0.90 0.107

2
ωσ

0.53 0.113 0.88 0.271 0.109 0.89 0.243 0.099 0.90 0.102 0.096 0.91 0.095

ρuω 0 0.0086 0.92 0.154 0.008 0.93 0.147 0.0067 0.96 0.135 0.006 0.96 0.128

Table 3. Location scale mixed effects model with random intercept based on simulation with ρuω=0.5.

Su
b 

m
od

el

Pa
ra

m
et

er

Tr
ue

  v
al

ue
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SE
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RM
SE

Bi
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Co
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R
M

SE

Lo
ca

tio
n β0

-0.64 -0.102 0.9 0.119 -0.094 0.92 0.104 -0.054 0.92 0.083 -0.041 0.94 0.081
β1

0.22 0.021 0.91 0.093 0.019 0.91 0.062 0.017 0.93 0.049 0.017 0.93 0.051
β2

0.06 0.028 0.94 0.188 0.028 0.95 0.136 0.022 0.97 0.097 0.019 0.99 0.074

Sc
al

e

w0
0.1 0.041 0.92 0.142 0.037 0.94 0.117 0.034 0.91 0.107 0.031 0.93 0.077

w1
0.07 0.027 0.89 0.078 0.021 0.91 0.081 0.017 0.93 0.052 0.012 0.95 0.021

w2
-0.01 -0.020 0.91 0.183 -0.017 0.95 0.143 -0.013 0.95 0.069 -0.009 0.97 0.009

ν0
-2.13 -0.093 0.90 0.210 -0.088 0.91 0.155 -0.082 0.90 0.128 -0.076 0.91 0.083

ν1
0.59 0.177 0.88 0.221 0.171 0.90 0.223 0.152 0.91 0.206 0.112 0.92 0.099

2
ωσ

0.53 0.107 0.92 0.251 0.099 0.93 0.245 0.097 0.92 0.093 0.097 0.94 0.087

ρuω
0.5 0.052 0.96 0.171 0.048 0.96 0.178 0.042 0.94 0.127 0.034 0.95 0.093
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scenarios (three different values for ρuω). When 
the sample size increases, an improvement in 
the accuracy could be observed. These results 
can also be seen in Figures 2, 3 and 4. In each 
scenario, we also used the DIC criterion for 
choosing the best-fitted model. As shown in 
Table 5, the DIC of mixed effects location scale 
models were generally smaller than those of 
the mixed effects models. On the other hand, 
based on the results of Table 2,3 and 4, higher 
correlation between the random location effect 
and random scale effect leads to more accurate 
estimation of the parameters (Figure 2, 3 and 
4). Additionally, Table 5 shows that as the  
ρuω increases, the percentage of times that the 

mixed effects location scale model is chosen 
over the mixed effects model based on the DIC 
measure also increases.

Figure 2. Comparison of mean squared error with 
different sample size by model parameters for  ρuω  =0

Table 4. Location scale mixed effects model with random intercept based on simulation with ρuω=0.9.
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Lo
ca

tio
n β0 -0.64 -0.101 0.89 0.110 -0.082 0.91 0.089 -0.041 0.91 0.082 -0.039 0.92 0.078

β1 0.22 0.019 0.93 0.091 0.014 0.92 0.051 0.018 0.94 0.043 0.015 0.93 0.039
β2 0.06 0.022 0.94 0.184 0.019 0.96 0.111 0.013 0.98 0.074 0.013 0.99 0.069

Sc
al

e

w0 0.1 0.032 0.90 0.142 0.032 0.91 0.094 0.025 0.92 0.072 0.029 0.91 0.052
w1 0.07 0.021 0.92 0.075 0.018 0.94 0.061 0.009 0.96 0.018 0.004 0.96 0.014
w2 -0.01 -0.018 0.94 0.181 -0.014 0.97 0.112 0.009 0.97 0.039 -0.007 0.99 0.003
ν0 -2.13 -0.081 0.92 0.201 -0.073 0.92 0.125 -0.075 0.91 0.112 -0.035 0.93 0.055
ν1 0.59 0.159 0.87 0.214 0.143 0.88 0.191 0.101 0.92 0.147 0.008 0.94 0.091

2
ωσ 0.53 0.098 0.91 0.241 0.095 0.93 0.233 0.089 0.95 0.098 0.093 0.94 0.073

ρuω 0.9 0.043 0.95 0.193 0.041 0.94 0.180 0.024 0.94 0.094 0.001 0.96 0.082

Table 5. The percentage of times that the mixed effects location scale model has been chosen over the mixed effects 
model based on the DIC measure

Sample size
Correlation between random location effect and random scale effect

ρuω=0 ρuω=0.5 ρuω=0.9
50 81% 83% 87%
100 84% 91% 89%
300 92% 94% 95%
500 98% 97% 98%
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Figure 3. Comparison of mean squared error with 
different sample size by model parameters for  ρuω =0.5

Figure 4. Comparison of mean squared error with 
different sample size by model parameters for ρuω =0.9

In summary, based on the simulation results, 
modeling BS and WS variances seems to be 
important. Therefore, the proposed mixed 
effects location scale model demonstrates 
better performance compared to the mixed 
effects model in the analysis of correlated 
binary outcomes.

Discussion

In this article, we proposed a mixed effect 
location scale model for the analysis of binary 
outcome to deal with heterogeneous longitudinal 
data within a Bayesian framework. This model 
holds heterogeneity in BS and WS variances 

through inclusion of subject- and time-varying 
covariates. Moreover, this model enables us 
to explain the heterogeneity in WS variance 
(which cannot be explained by the covariates) 
by including a random effect at subject level 
on WS variance. The random location and scale 
effects are assumed to be correlated. 
Simulation results showed that the proposed 
mixed effect location scale model is better than 
the mixed effect because the bias and RMSE 
for the proposed model are mostly lower than 
those of the mixed effect model. We also 
fitted our proposed mixed effect location scale 
model and mixed effect model on a real dataset 
of patients` UA levels with hematological 
disorders who had allogeneic hematopoietic 
stem cell transplantation. In terms of the mean 
parameters, sex and time had a significant 
effect on the UA level. Since Variables such as 
metabolic syndrome, diabetes, cardiovascular 
disease, etc., have an impact on changes in UA 
levels, these confounding variables have been 
controlled between patients in this study. The 
odds of having normal UA levels will increase 
by increasing time. In terms of the WS variance 
model, time decreased the heterogeneity of a 
patient`s responses, whereas sex increased this 
variance. For BS variance, males were more 
varied in the UA level. The random WS variance 
(the BS variance of scale) and covariance 
parameters are both highly significant. We 
showed that the proposed model was better 
than the mixed effects model for this data.
Due to computational constraints, the 
parameter estimation for mixed effects location 
scale model is challenging. So, a Bayesian 
approach is proposed to estimate parameters in 
this model. The main limitation of the research 
was the lack of longitudinal studies with 
appropriate follow-up time for including in the 



267

Vol 9  No 2 (2023)

Addressing Heteroscedasticity in Correlated Binary Data ...

Rezanejad-Asl P et al. 

proposed model. In order to accurately estimate 
the model parameters, it seems necessary 
to conduct further studies to investigate the 
outliers and influential observations, especially 
the variance parameters.

Conclusions

Using mixed effects location scale model for 
analyzing correlated binary data, in addition 
to considering data correlation, it deals with 
modeling mean and variance simultaneously 
and improves the estimation of model 
parameters. By considering the heterogeneity 
of variances across the subjects, this model 
will have better estimation of the parameters. 
The Bayesian approach of this model could 
be a good alternative to the classical approach 
due to the large number of model parameters 
(location and scale model parameters) and also 
because the maximum likelihood function of 
this model is not closed form.
As a suggestion for future studies, the 
researchers might use the proposed location-
scale mixed effects model in modeling 
correlated ordinal or count data. In the methods 
section, we included only a single random 
term in the location part of the model. This 
could be generalized to models with multiple 
location random terms. We also assumed 
that the random location effects are normally 
distributed and the random scale effects are 
log-normally distributed, thus this can be tested 
using the approach proposed by Liu and Yu  for 
estimating models with non-normal random 
effects.34 Another extension of our suggested 
method could be the simultaneously analysis 
of multiple binary responses using multivariate 
mixed effects location scale model.
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