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Introduction 
 
Acute lung injury (ALI) is a severe systemic in-
flammatory response syndrome characterized by 
refractory hypoxemia and respiratory distress, 
resulting in respiratory failure and subsequent 
mortality (1). Common causes of ALI include 
serious infection, sepsis, aspiration, shock, as well 
as trauma (2), and sepsis is the most common 
one (3). Worriedly, the mortality is approximately 

40% and the survival rate in patients with signifi-
cant lung injury is about 50% (4). Thus, it is a 
major challenge to elucidate the molecular mech-
anisms of sepsis-induced ALI, and to early diag-
nose ALI patients. 
As we all know, the present clinical standard for 
diagnosing ALI covers hypoxemia, pulmonary 
edema, as well as capillary leakage. Of note, an 

Abstract 
Background: The study aimed to detect critical metabolites in acute lung injury (ALI).  
Methods: A comparative analysis of microarray profile of patients with sepsis-induced ALI compared with 
sepsis patients with was conducted using bioinformatic tools through constructing multi-omics network. Multi-
omics composite networks (gene network, metabolite network, phenotype network, gene-metabolite associa-
tion network, phenotype-gene association network, and phenotype-metabolite association network) were con-
structed, following by integration of these composite networks to establish a heterogeneous network. Next, 
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4 metabolites with the scores > 0.009, including CHITIN, Tretinoin, sodium ion, and Celebrex. Adenosine 5'-
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unconformity exists between clinical standard 
and histological autopsy results (5). Due to this 
difficulty in diagnosis, it is urgently imperative to 
detect biomarkers for ALI. Fortunately, gene ex-
pression analysis has been performed, microarray 
technology enhances extraction of diagnostic and 
prognostic biomarkers, and sheds insights on the 
pathology of disease. For example, GSE10474, 
developed by Howrylak in 2009 (6), is a microar-
ray data about ALI, in which, an eight-gene ex-
pression profile that can distinguish between pa-
tients with ALI plus sepsis and sepsis patients 
accurately. Moreover, Chen et al. (7) have used 
the same expression profile (6) to further discov-
er 12 differentially expressed genes (DEGs) and 7 
important functions. Guo et al. (8) also used this 
microarray data to identify several key genes 
(PTK2, SRC and CAV2) for ALI in patients with 
sepsis. Although these studies are helpful to re-
veal the molecular mechanism of ALI, the DEGs 
obtained in these studies were not consistent. In 
addition, the metabolites of ALI have not studied 
so far. As demonstrate, extracting the disease-
related metabolites is highly important for im-
proving clinical diagnosis, and for a better under-
standing of metabolic pathological processes (9, 
10).  
With the aim of detecting the novel and signifi-
cant metabolites for ALI, we used the same mi-
croarray expression data of ALI (GSE10474) to 
compare the chip data from septic ALI with 
those from sepsis patient to uncover DEGs. 
Moreover, a weighted composite network was 
constructed through integrating six data set (gene 
network, metabolite network, phenotype net-
work, gene-metabolite association network, phe-
notype-gene association network, and phenotype-
metabolite association network). Then, candidate 
metabolite prioritization was implemented based 
on the weighted composite network. We believe 
that our study will provide several insights of the 
understanding of etiology on how ALI initiates 
and progresses. More significantly, candidate me-
tabolites might offer the basis for the early detec-
tion and treatment for ALI. 

 

Materials and Methods 
 
Gene expression data 
Expression profile of GSE10474 (6) was ob-
tained from gene expression omnibus database 
(GEO, http://www.ncbi.nlm.nih.gov/geo/), 
which was determined using the platform of 
Affymetrix Human Genome U133A 2.0 Array 
(Affymetrix Inc., Santa Clara, California, USA). 
In GSE10474, there were 13 whole blood sam-
ples with ALI plus sepsis and 21 whole blood 
samples in patients with sepsis alone. We down-
loaded the raw data for subsequent analysis. 
 
Pre-treatment and differential analysis 
Raw probes were read with package affy of R 
(11). Then, robust multichip averaging (RMA) 
method was used to conduct pre-treatment in-
cluding background adjustment, normalization 
and expression value calculation. After the 
probes were aligned to the gene symbols, we ob-
tained a total of 11,199 genes. Differential analy-
sis was performed based upon t-test. The adjust-

ed p-value (FDR) < 0.05 was selected as the cut-
off criteria. Importantly, these DEGs were used 
to construct the following gene-gene network. 
 
Construction of multi-omics composite net-
work 
 A composite network was established through 
integrating 6 data, which were denoted by 6 net-
works (gene network, metabolite network, phe-
notype network, gene-metabolite network, phe-
notype-gene network, and phenotype-metabolite 
network). Next, we would looked at the detailed 
description.  
 

Gene network  
In this analysis, we downloaded all human pro-
tein-protein interactions (PPIs) having combine-
scores (1,048,576 interactions) from the STRING 
database to further construct the background PPI 
network. After eliminating the duplicated PPIs, 
and converting proteins into genes, 1,515,370 
highly correlated gene interactions (covering 
16,785 genes) were extracted to build the seed 
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PPI network (herein, combine-score of interac-
tions not less than 0.8). Then, we took the inter-
section between the 16,785 genes of the seed PPI 
network and DEGs to establish the informative 
gene-gene network. 
 
Metabolite network  
There were 4,994 human metabolites, which were 
gathered from the human pathways of Reactome, 
MSEA (12) and SMPDB (13), and from the me-
tabolite pathways of KEGG and HMDB. Subse-
quently, metabolite-metabolite interactions of 
human and the corresponding confidence scores 
were collected from STITCH (14), in which the 
metabolites must be included in the 4,994 human 
metabolites. At the end, we acquired 3,764 hu-
man metabolites and 74,667 human metabolite 
associations (not all metabolites interacted in 
STITCH). 
 
Phenotype network 
As demonstrated, 5,080 phenotypes and the simi-
larity scores across them were covered in the 
phenotype-phenotype interactions (15), The ma-
jority of documented phenotypes in human were 
included in these phenotypes. On the basis of the 
phenotype-phenotype similarity interactions, a 
phenotype network was constructed. 
 
Gene-metabolite association network  
To obtain the gene-metabolite associations in 
human, we collected the human chemical and 
gene interactions and their confidence scores 
from the STITCH. Based on the 4,994 human 
metabolites, human metabolite and gene associ-
ations were obtained. After getting rid of the 
metabolites not included in the metabolite net-
work and eliminating the genes not involved in 
the gene network, 192,763 gene-metabolite in-
teractions were obtained (covering 12,342 
genes, and 3,278 metabolites). 

 
Phenotype-gene association network  
To begin with, the phenotype-gene interactions 
were obtained relying on the curated Morbid 
Map file of the OMIM database. When discard-
ing the phenotypes that were not included in the 

phenotype network and the genes that were not 
involved in the gene network, 1,715 genes, 1,886 
phenotypes, and 2,603 gene-phenotype associa-
tions were reserved. Theoretically, 1 was defined 
as the weighted score for each phenotype-gene 
association.  
 
Phenotype-metabolite association network 
First of all, phenotype-metabolite associations 
were obtained from the HMDB. Then, 664 asso-
ciations between 388 metabolites and 149 pheno-
types were reserved after filtration. The weighted 
score was determined as 1 for each phenotype-
metabolite interaction. 
 
Establishment of a heterogeneous network 
With the goal of prioritizing the potential metab-
olites, the above six composite networks men-
tioned were integrated into a weighted composite 
network, namely a heterogeneous network. The 
details were described in then literature (16).  
 
Prioritization of candidate metabolite based 
on the heterogeneous network  
We firstly extracted the known disease metabo-
lites from the Human Metabolome Database 
(HMDB) (17) which collected the specific infor-
mation of small-molecule metabolites of human 
and the disease-related phenotypes described in 
the OMIM. The known ALI-associated genes 
were retrieved from the Morbid Map file of 
Online Mendelian Inheritance in Man (OMIM) 
database (18). After obtaining these data, we 
mapped these seed genes and known disease me-
tabolites to the heterogeneous network. 
To prioritize the candidate metabolites from the 
heterogeneous network, we utilized RWR meth-
od to expand to the heterogeneous network (19). 
In theory, RWR prioritized potential metabolites 
according to the proximity of every candidate 
metabolite to the ALI-related seed genes within 
the network and simulating a random walker 
starting with the seed nodes. At every step, the 
walker moved from the current node to its direct 
neighbors with probability 1-β or returned to the 
seed nodes with probability β. We then ranked 
these candidate metabolites using distance prox-
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imity. Based on the distance proximity, the top 50 
metabolites with the greatest scores were identi-
fied and defined as the ALI-prioritized metabo-
lites. 
Using the top 50 metabolites and the heteroge-
neous network, we detected several genes inter-
acted with the top 50 metabolites, and then we 
extracted the top 100 co-expressed genes relying 
on the score distribution. 
The sub-network about the top 50 metabolites 
obtained from the composite network, and the 
co-expressed network were all constructed. Of 
note, in order to uncover significant metabolites 
involved in ALI, we implemented degree analyses 
for these two networks. 
 

Results 
 
DEGs identification and establishment of a 
integrated multi-omics composite network  
Firstly, DEGs were identified which were used to 
further establish the gene-gene network. When 
the criteria was set as the FDR < 0.05, a total of 
560 DEGs were screened out between the two 
groups. 

Then, an integrated multi-omics composite net-
work was built through merging 3 kinds of data 
(metabolome, genome, and phenome), and 6 
kinds of interactions (metabolite-metabolite, 
gene-gene, phenotype-phenotype, gene-
metabolite, phenotype-gene, as well as pheno-
type-metabolite). Overall 9363 nodes and 
10,226,148 edges were included in this composite 
network.  
 

Prioritizing the ALI-related metabolites 
Totally, 6 ALI-related risk genes are stored in the 
OMIM database, including ACE2, TGFB1, 
TLR2, TLR4, ANGPT2, AGTR1, which were 
extracted as seed genes from the OMIM data-
base. The OMIM ID for ALI is 178500, and no 
known disease metabolites about ALI in HMDB. 
In our analysis, the whole metabolome as candi-
dates, the phenotype of ALI, and the 6 disease-
related genes of ALI were used as seeds. To de-
clare the intrinsic mode of this method, the me-
tabolites within the weighted composite network 
were ranked in descending order relying on the 
interaction scores, and the top 50 metabolites 
with the highest scores were extracted. The top 
10 metabolites was shown in Table 1. 

  
Table 1: List of the top 10 metabolites 

 

Rank Metabolite CID Metabolite Name Score 
1 24139 CHITIN 0.001229 
2 444795 Tretinoin (TN) 0.001227 
3 923 sodium ion 0.000964 
4 27476 1-Methyladenosine 0.000939 
5 2662 Celebrex (TN) 0.000902 
6 5280360 Cervidil (TN) 0.000747 
7 5994 Prometrium (TN) 0.00068 
8 79014 D-glyceraldehyde 0.000657 
9 6022 Adenosine 5'-diphosphate 0.000589 
10 5757 Estraderm (TN) 0.000581 

 

There were 4 metabolites with the scores > 
0.009, including CHITIN (score = 0.001229), 
Tretinoin (score = 0.001227), sodium ion (score 
= 0.000964), and Celebrex (score = 0.000902). A 
subnetwork for the top 50 metabolites was ex-
tracted from the whole composite network, as 
listed in Fig. 1. Adenosine 5'-diphosphate had the 

highest degree of 29, and Triphosadenine owned 
the higher degree of 27. 
Next, we detected the co-expressed genes inter-
acted with the top 50 metabolites based on the 
score ranking. On the basis of setting criteria 
previously, the top 100 co-expressed genes were 
identified, and the co-expressed network of the 
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top 100 genes was exhibited in Fig. 2. After de-
gree analysis for the co-expressed network, there 
were 5 metabolites with the degree not less than 
55, including Adenosine 5'-diphosphate (degree 

= 65), triphosadenine (degree = 64), Estraderm 
(degree = 59), tretinoin (degree = 55), and mag-
nesium ion (degree = 55). Significantly, tretinoin 
was the member of the top 5 metabolites.  

 

 
Fig. 1: Composite sub-network of the top 50 metabolites and the 6 seed genes. Yellow nodes were the ALI-related seed genes 
obtained from the OMIM database. Pink nodes denoted the metabolites, and red ones were on behalf of the metabolites with 

the distance proximity > 0.009 
 

 
Fig. 2: Co-expressed network. Blue nodes were the top 100 co-expressed genes. Yellow nodes devoted the members of ALI-
related seed genes. Pink nodes were the metabolites, and Red ones were the metabolites with the distance proximity > 0.009 
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Discussion 
 
Although remarkable progress has been made in 
the management of ALI induced by sepsis, the 
prevention and early diagnosis are crucially im-
portant. It is helpful for us to uncover diagnostic 
biomarkers for ALI. Through the literatures, 
finding disease-related metabolites is a key step 
for increasing clinical diagnosis (10, 20). “Omics” 
data (including metabolic, phenomic, and ge-
nomic), will provide available information to pri-
oritize the disease-related candidate metabolites. 
More significantly, one disease is frequently 
caused by the interactions among functionally 
related genes and metabolites that organize into a 
complicated network. Naturally, combining me-
tabolite, gene, and phenotype data is an effective 
method to build a composite network to further 
identify disease-risk metabolites, and this integra-
tion approach can offer comprehensive and accu-
rate information (21, 22). Few efforts have been 
done to reveal the possible involvement of me-
tabolisms in ALI, thus, we aimed to detect the 
candidate metabolites in ALI to further explore 
the underlying mechanisms of ALI. 
In our study, a metabolite adenosine 5'-
diphosphate had the highest degree in the sub-
network for the top 50 metabolites and the co-
expressed network. The primary roles of poly 
adenosine diphosphate-ribose polymerase 
(PARP) are to repair DNA, sense DNA damage, 
and maintain genomic stability (23). Further, up-
regulation of PARP might be detrimental 
through removing cellular ATP stores, thereby 
leading to cell dysfunction and death 
(24). Adenosine 5′-diphosphate ribose synthetase 
exerts key functions in ALI in pigs (25). Remark-
ably, suppression of PARP has been implicated 
to attenuate the lung injury induced by ventilator 
(26). Accordingly, adenosine 5′-diphosphate 
might play crucial roles in the progression of ALI 
via regulating the cellular suicide mechanism (27). 
Another metabolite triphosadenine owned the 
higher degree in the subnetwork for the top 50 
metabolites and the co-expressed network. A 
former study has implicated that triphosadenine 

can increase the expression level of ROS (28). 
Furthermore, increased production of ROS is 
associated with the in-
creased oxidative stress (29). Oxidant stress is 
implicated to be a major contributor in the ALI 
progression (30). Additionally, the protective 
mechanisms of several drugs (for example, rutin, 
quercetin and trillin) for lipopolysaccharide-
induced ALI is through suppression of oxidative 
stress (31-33). Thus, we speculate that the me-
tabolite triphosadenine is closely related to the 
pathology of ALI. Moreover, the metabolite tret-
inoin had the higher degree in this analysis.  
As reported, tretinoin is the main active form of 
vitamin A in the organism, which plays a variety 
of roles in regulating cell growth, differentiation, 
modulating inflammatory as well as immune re-
sponse, and repairing cell injury (34). More re-
cently, the tretinoin was implicated to influence 
branching morphogenesis of lung through the 
interactions with several genes participating in 
lung development (35). 
Treatment with tretinoin may improve the alveo-
lar structure, and reduce alveolar septal fibrosis in 
preterm infants (36). Oxidative stress is suggested 
to play a key role in the development of ALI. It 
was shown that tretinoin, as the antioxidants, was 
believed to protect the lung against damage in-
duced by oxygen free radicals (37). Consequently, 
we believe that tretinoin might be related to the 
progression of ALI. 
 

Conclusion 
 

Chip data from patients with ALI induced by 
sepsis were compared with those from sepsis pa-
tients to detect candidate metabolites which may 
play a role in ALI. Relevant metabolites like 
Adenosine 5'-diphosphate, triphosadenine, and 
tretinoin might be potential biomarkers for diag-
nosis and therapy of ALI. However, further ex-
periments will be done to confirm our findings.  
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