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Introduction 
 

The human economic activity has raised not only 
standard of living in most countries but also has 
raised global concerns in terms of climate change 
(1). Climate change refers to continuous shift in 
weather patterns over a long period with respect 
to growing human activities, biotic processes and 
plate tectonics. The Intergovernmental Panel on 
Climate Change (IPCC) has delineated an in-
crease of 0.740C in worldwide average surface 
temperature in 20th century and it continues to 
move up at an average of 1.5-5.8 0C in the 21st 
century (2, 3). The global warming and conse-
quent change in climate is holding multifaceted 
challenges to the world with reference to perilous 

conditions of human health perpetrated by the 
infectious diseases (4).   
Many factors like socio-economic conditions, 
availability of health care facilities, and inner hu-
man immunity along with weather conditions 
determine the spread of infectious diseases (5-7) 
(5). Numerous infections carrier like vector or-
ganisms, reservoir species of non-human agents 
and pathogens have particular sensitivity to 
weather patterns (8). Climate change provides 
vulnerable conditions for diverse infectious dis-
eases borne by water, air and food (9). The pro-
cess of carrying these diseases is done by three 
active agents i.e. pathogen, host and a vulnerable 
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transmission environment (10, 11). Climate 
change either directly affects the life cycle, sur-
vival and reproduction of pathogens or indirectly 
influences these activities by manipulating the 
local conditions like environments and other 
competitors for the pathogens (12). Moreover, 
temperature plays a mediating role for survival 
and development of pathogens like maximum 
temperature ranging from 22-23 0C is highly vul-
nerable for mosquitoes’ development and surviv-
al while minimum temperature ranging from 25-
26 0Cis required for spread of Japanese Encepha-
litis virus (JEV) and also plays a key role in ecol-
ogy of JEV (13, 14). However, excessive heat also 
raises the mortality rates for some pathogens (15, 
16). Similarly, a rise in temperature can also influ-
ence the reproduction and extrinsic incubation 
period (EIP) of pathogens like the EIP for P. 
falciparum reduces from 26 days at 20 0C to 13 
days at 25 0C (17, 18).     
The research highlighted an ever increasing role 
of warm and unstable climate change in accelerat-
ing the worldwide emerging, resurging and redis-
tribution of infectious diseases (13, 19). The in-
fectious diseases transmitted through insects like 
dengue, cholera, malaria are extremely responsive 
to climate change followed by diseases transmit-
ted through water, food and soil (13, 16). For 
survival, the V. Cholerae need an optimum tem-
perature and physicochemical circumstances (sa-
linity, pH, humidity etc.) (20). Nevertheless, a 
manifestation has been also seen to resist the 
suboptimal conditions via specific collaboration 
of the bacterium with aquatic plants or animals 
like oysters, copepods and crabs that helps the 
pathogen to persist for longer time spans in 
aquatic habitats (21, 22). Moreover, weather con-
ditions like an increasing temperature in envi-
ronmental or sea surface conditions help plank-
ton bloom (20). Likewise crowded living condi-
tions and poor access to water and sanitation ser-
vices along with environmental degradation in 
developing countries make the environment con-
ducive to cholera incidence (23, 24). While in 
case of measles both extreme weathers i.e. hot 
and cold lowers its probability of incidence, how-
ever, any change resulting in the moderation of 

weather caused by climate change may increase 
its incidence (25, 26). Furthermore, measles is a 
contagious disease, therefore more likely to 
spread as population density increases (27). 
While a number of studies have considered the 
nexus amid infectious diseases and climate 
change, only a relatively small number of studies 
have utilized the data that covers a sufficiently 
long time-span. The time-span is particularly im-
portant for countries that are exposed to the 
highest climate change risk. This paper provides 
empirical evidence that promotes the understand-
ing of the ecological and socioeconomic drivers 
of cholera and measles’ outbreak in some devel-
oping countries that are severely affected by the 
climate change reported by German watch Or-
ganization. The analysis presented in this paper 
could also contribute to a more accurate predic-
tion of the spread of epidemic diseases thereby 
allowing the relevant authorities to take more ef-
fective steps in infectious disease control. 
 

Methods 
 

Description of Variables and Empirical Model 
Our empirical model is based on a study (28), 
extended by others (29, 30). The latter studies 
examined the nexus between infectious diseases 
and climate change. We extended framework of 
(29, 30) by including climatic change and socio-
economic factors that can have a significant ef-
fect on infectious diseases’ incidence. The study 
focused on countries that are significantly affect-
ed by climate change in recent years i.e. India, 
Thailand, Philippines, Bangladesh, Zimbabwe 
and Myanmar. The empirical model is as follows: 
 

𝑀 = 𝑔(𝐶𝑉, 𝐷)    [1] 
 
Where M denotes the persons who got treatment 
of infectious diseases, while, CV denotes the cli-
mate variable proxy by temperature. Further, D 
denotes socio-economic variables like education, 
income and population density.  
The researchers have included socio-economic 
features in equation [1] aiming to have valid re-
sults. A static model was estimated where the 
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number of patients infected in the current period 
is independent with reference to previous years’ 
patients. Most of the infectious diseases quickly 
spread in different time periods consisting of 
days, of weeks and sometimes of months. The 
researchers hypothesized that spreading of dis-
ease reaches to its steady-state in a period of year 
and therefore this model is appropriate. As avail-
able data is annual, therefore, the researchers 
have employed static model stated as: 

𝑀𝑖𝑡 = 𝛽0 + 𝛽1𝑡𝑒𝑚𝑝𝑖𝑡 + 𝛿𝐷𝑖𝑡 + 𝜀𝑖𝑡  
    [2] 
We used country-level panel dataset and each 
variable included in equation [2] refers to county 

I at time t. 𝐷𝑖𝑡 represents socio-economic factors 
(income, education and population density), 

𝑡𝑒𝑚𝑝𝑖𝑡 is a measure of climate change which is 

our main explanatory variable, and 𝜀𝑖𝑡is the error 
term; which captures the effect of all omitted var-
iables. 
The researchers measured the number of patients 
considered per 100,000 inhabitants as a proxy for 
the dependent variable. Infectious diseases dis-
cussed in this study are Cholera and Measles. The 
Gross Domestic Product (GDP) per capita is 
used as a proxy for national income, population 
density while secondary school enrollment (has 
been used as a proxy for national educational lev-
el) as independent variables in the model. We 
used the pooled mean grouped (PMG) estimator 
(31) to model the panel co-integration equation. 
The PMG estimator assumes the long-run coeffi-
cient to identical but allows error variances and 
short-run coefficients to vary across groups. It is 
modified version of mean group (MG) estimators 
(32). The MG estimator uses average values of 
the coefficients for each group, so the MG esti-
mator assumes the slope coefficients and error 
variances to be homogeneous, in this way MG is 
close to pooled estimators’ class(31).  Following 
Pesaran et al (31), the long-run equation can be 
written as: 

𝑀𝑖𝑡 = 𝛽0 + 𝛽1𝑡𝑒𝑚𝑝𝑖𝑡 + 𝛽2𝐺𝐷𝑃𝑖𝑡 + 𝛽3𝑃𝑜𝑝𝑖𝑡 +
𝛽4𝑙𝑒𝑑𝑖𝑡 + 𝜇𝑖𝑡 + 𝜀𝑖𝑡  [3] 

We used maximum two lags and conducted the 
ARDL (2,2,2,2) equation as follows:  

𝑀𝑖𝑡 = 𝛹10𝑖𝑡𝑒𝑚𝑝𝑖𝑡 + 𝛹11𝑖𝑡𝑒𝑚𝑝1,𝑡−2 +
𝛹20𝑖𝐺𝐷𝑃𝑖𝑡 + 𝛹21𝑖𝐺𝐷𝑃𝑖,𝑡−2 + 𝛹30𝑖𝑃𝑜𝑝𝑖𝑡 +
𝛹31𝑖𝑃𝑜𝑝𝑖,𝑡−2 + 𝛹40𝑖𝑙𝑒𝑑𝑖𝑡 + 𝛹41𝑖𝑙𝑒𝑑𝑖,𝑡−2 +
𝜍𝑖𝑡𝑒𝑚𝑝𝑖,𝑡−1 + 𝜇𝑖𝑡 + 𝜀𝑖𝑡   

 [4] 
Equation for error correction form is written as 
follows: 

𝑀𝑖𝑡 = 𝑖𝑡(𝑀𝑖,𝑡−1 − 𝜁0𝑖 − 𝜁1𝑖𝑡𝑒𝑚𝑝𝑖𝑡 −

𝜁2𝑖𝐺𝐷𝑃𝑖𝑡 − 𝜁3𝑖𝑃𝑜𝑝𝑖𝑡 − 𝜁4𝑖𝑙𝑒𝑑𝑖𝑡) +

𝛹11𝑖𝑡𝑒𝑚𝑝𝑖𝑡 + 𝛹21𝑖𝐺𝐷𝑃𝑖𝑡 + 𝛹31𝑖𝑃𝑜𝑝𝑖𝑡 +
𝛹41𝑖𝑙𝑒𝑑𝑖𝑡 + φ𝑖𝑡    
 [5] 
Where 

𝑖𝑡 = −(1 − 𝜁𝑖),   𝜁0𝑖 =
𝜇𝑖

𝜍𝑖
⁄ ,  

   𝜁1𝑖 = 𝛹10𝑖 +
𝛹11𝑖

1 − 𝜍𝑖
⁄ , 𝜁2𝑖 = 𝛹20𝑖 +

𝛹21𝑖
1 − 𝜍𝑖

⁄ ,

 𝜁3𝑖 = 𝛹30𝑖 +
𝛹31𝑖

1 − 𝜍𝑖
⁄  ,  

 𝜁4𝑖 = 𝛹40𝑖 +
𝛹41𝑖

1 − 𝜍𝑖
⁄  

In equation [5], φ represents error correction 

term; 𝜁represents long run coefficients while Ψ 
show short run coefficients.  
 

Results and Discussion 
 

To examine the issue of non-stationarity, we test-
ed panel unit roots in the selected variables. Spe-
cifically, we relied on the Levin-Lin-Chu, Im-
Pesaran-Shin, and Fisher-type tests (assuming 
homogeneity of the dynamic panel auto regres-
sion in all panels) (Table 1).Given the mixed or-
der of integration, we first applied co-integration 
using Kao procedure. The results are stationary at 
level I(0) for temperature (Temp), education (Ed) 
and population density (Pop), however, In-
come(GDP) result is stationary at first difference 
I(1) on individual panel unit root testing. The sta-
tistical significance at 1%, 5%, 10% is denoted by 
***, **, * respectively. 
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Table 1: Results of Panel Unit Root test 
 

Order of Levin-Lin-Chu Test Im-Pesaran-Shin Test Fisher-type Test 
 integration of  
Variable 

t-Statistics P-value Z-t-tilde-bar P-value Pm P-value 

Patients 
I(0) 

-2.8276*** 0.0023 -3.1462*** 0.0008 7.3094*** 0.0000 

Pop 
I(0) 

-5.2001*** 0.0000 -3.4791*** 0.0003 11.1741*** 0.0000 

Temp 
I(0) 

-5.2280*** 0.0000 -5.8502*** 0.0000 3.9733*** 0.0000 

GDP 
I(1) 

-2.6553*** 0.0043 -3.1202*** 0.0009 1.8430** 0.0327 

Ed 
I(0) 

-2.7019*** 0.0034 -2.3297*** 0.0099 3.0100*** 0.0013 

 

Panel Co-integration  
To examine co-integration test statistics, we ap-
plied Kao test (33). The statistical results indicate 
existence of strong panel co-integration among 
number of patients reported, income level, edu-

cation, and population density as shown in Table 
2. To further validate our results for robustness, 
we applied Pedroni test which shows the panels 
are co-integrated with the exception of Modified 
Philips-Peron test. 

 
Table 2: Results of Kao and PedroniCo-integration test 

 

Variable t-statistic P-value 
Modified Dickey-Fuller t -5.8461*** 0.0000 
Dickey-Fuller t -5.6047*** 0.0000 
Augmented Dickey-Fuller t -2.5498*** 0.0054 
Unadjusted Modified Dickey-Fuller t -9.3013*** 0.0000 
Unadjusted Dickey-Fuller t -6.3698*** 0.0000 
Modified Phillips-Perron t 1.0542 0.1459 
Phillips-Perron t -4.1550*** 0.0000 
Augmented Dickey-Fuller t -3.8366*** 0.0001 

Note: The statistical significance at 1%, 5%, 10% is denoted by ***, **, * respectively 

 
Long and Short Run Estimation Results 
The Hausman test result for long run homogenei-
ty, which allows one to choose between the MG 
and PMG estimators (34, 35), is shown in Table 3. 
The estimated result shows that PMG estimator is 
better than MG estimator as p-value is 0.5483, and 
is greater than 0.05;therefore, we preferred PMG 
estimator as it gives more efficient results. The 
long run coefficients under the PMG estimator are 
more efficient and consistent than MG estimator 
because MG technique deals with averaging the 
estimates of individual regressions while PMG 
technique permits the short run error variances 
and coefficients to differ among countries (31). 

The PMG estimator shows the coherence and as-
ymptotic properties of mixed of the series with 
mixed order of integration. PMG exhibits the 
long-run relationship and gives ECM coefficient 
which further confirms the co- integration of the 
variables. 
Table 4 shows the estimated long and short run 
elasticity of patients with respect to temperature, 
population density, education and income 
growth. Coefficient of the error correction is 
negative and significant, which indicates that the 
model is stable and convergence to long run val-
ues, in response to a shock, occurs quickly. 
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Table 3: Results of Hausman test 
 

Coefficients 
 (b) 

Mg 
(B) 
Pmg 

(b-B) 
Difference 

sqrt(diag(V_b-V_B)) 
S.E. 

Patients -0.2970 -0.2481 -0.0490 0.5940 
Pop -0.1012 0.0094 -0.1106 0.2303 
Temp 0.8377 0.3108 0.5269 1.1617 
Temp2 -2.6983 -1.2045 -1.4938 4.6571 
Gdp -19.1733 1.8186 -20.9919 16.3932 
Led 17.7367 -1.9991 19.7358 16.1565 
b consistent under Ho and Ha; obtained from MG estimation, B inconsistent under Ha, efficient under Ho; 
obtained from PMG estimation: Ho: difference in coefficients not systematic 
χ2(6) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 4.96  
Prob>χ2 = 0.5483 

 
The long run results indicate positive and signifi-
cant association between temperature and num-
ber of patients. This result is consistent with pre-
vious studies (6, 7, 36-39). It can be inferred that 
increase in temperature would lead to increase in 
water temperature which would subsequently 

boost the growth of copepods, zooplankton, 
phytoplankton or algal blooms and consequently 
would increase the survivability of V. cholera and 
consequent increase in the cholera incidence (20, 
36, 40).  

 
Table 4: PMG estimation results 

 

Dependent  
variable Patients 

Coefficient Std. Err. t-statistic Prob 

Long run estimation 
Patients -2.4807 0.0955 -2.60*** 0.009 
Pop 0.0094 0.0034 2.79*** 0.005 
Temp 0.3107 0.1659 1.87* 0.061 
Dlgdp 1.8186 1.9105 0.95 0.341 
Led -1.9991 0.4073 -4.91*** 0.000 
Short run estimation—full sample 
ECT -0.7552 0.1593 -4.74*** 0.000 
Pop -0.1128 0.8186 -0.14 0.890 
Temp 0.1017 0.2091 0.49 0.627 
Dlgdp 3.2642 4.4032 0.74 0.458 
Led 0.1712 1.8963 0.09 0.928 

Note: The statistical significance at 1%, 5%, 10%  is denoted by ***, **, * respectively 

 
At the same time higher temperature may lead to 
increasing sea level and the resulting intrusion of 
seawater to land, especially in offshore areas in-
creasing the survivability of V. cholera corre-
sponded by swift growth in absence of public 
health measures (40). Moreover, the cholera can-
not be labeled as a simple calculation of patho-
gens and human host, but it is based on a com-

plex network like weather patterns, water reser-
voirs, zooplankton, phages and communal be-
havior of surface-attached cells (20). Similarly, in 
case of measles the disease spreads due to a 
change in human habitation and climate change 
along with other reasons like fluctuation in tem-
perature indirectly promoting the measles’ spread 
because climate change stimulates the migration 
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and consequent higher population density in saf-
er cities (25). 
Our empirical results prove variables like income 
and population density having a positive and sta-
tistically significant effect on incidence of infec-
tious diseases, while endorse the effect of educa-
tion as negative. It is generally assumed that in-
come and patient ratio depicts a quadratic associ-
ation i.e. inverted U-shaped elaborating that as 
income increases, the possibility of infectious dis-
eases increases too. Albeit, after a certain income 
level, number of patients decreases with increase 
in income. The increase in income will increase 
the possibility of more investment in industrial 
sector correspondingly worsening the environ-
ment as in the case of environmental and health 
Kuznets curve. The deterioration in environment 
helps the cholera bacteria to flourish and conse-
quent outbreak of more cases.  
While high income ensures affordable access to 
medication implicitly assisting the healthcare pro-
fessionals to note the reported cases which are 
otherwise not possible due to low income 
(30).These results further re-confirm the negative 
relationship between education and incidence of 
infectious diseases (cholera, measles) patients as 
was suggested in previous studies (30, 41). It ex-
plains that education provides more knowledge 
and awareness to common people about the dis-
eases and their cause and prevention and thus has 
limited chances of widespread infectious diseases. 
The results also verify the positive relationship 

between population density and the number of 
patients. The higher concentration of population 
facilitates the chances of outbreak of cholera and 
measles (30). The outbreak of these diseases re-
mains a significant risk factor in highly densely 
populated areas mostly in developing countries 
having limited access to clean water and sanita-
tion services.  
The regions with higher population density, prox-
imity to surface water and lower level of educa-
tion are associated with higher risk of cholera 
motility and morbidity (41). Thus, education in 
this context can provide them a better under-
standing on how to take care of their community 
and household for preventive measures. Alt-
hough, public health policies may reduce the im-
pact, however, relying solely on public health 
measures is not adequate, we need to understand 
that slums prevalent in developing countries is a 
major cause of the higher population density and 
hence higher incidence of infectious diseases. It is 
therefore, essential to improve as well as imple-
ment town planning policies that could reduce 
higher population density. 
 
Panel Causality Testing Results 
Presence of a long run panel co-integration 
among infectious diseases, climate change, educa-
tion, income and population density imply the 
presence of Granger causality as shown in Table 
5.  

 
Table 5: Results of Panel Causality test 

 

Causalities w-statistics P-value 

patients⟺temp 2.1985** 2.7813*** 0.02 0.005 

patients⟺gdp 0.9013 -0.7730 0.360 0.430 

patients⟺pop 9.3106*** 6.4978*** 0.000 0.000 

patients⟺led 7.0436*** 4.9759*** 0.000 0.000 

Note: The statistical significance at 1%, 5%, 10%  is denoted by ***, **, * respectively 

 
Results verify the two-way causality among infec-
tious diseases, climate change, education, and 
population density while no long run causality 
has been found in case of income. The results 
verify the impacts of climate change on the prev-

alence of diseases in the countries hard hit by the 
climate changes in recent times. Our results are 
consistent with other studies (42-44), who con-
cluded the uni-directional causality between cli-
mate change and infectious disease. 
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Conclusion 
 

Temperature has a positive relationship with the 
number of patients affected from infectious dis-
eases. Similarly, population density had similar 
effects on patients; however, income was statisti-
cally insignificant. We found negative impact of 
education with reference to the number of pa-
tients where the increase in awareness will facili-
tate the people to take preventive measures to 
avoid infectious diseases.  
The investment in the public health sector will 
result in to decrease the number of patients re-
ported of infectious diseases in the long run. 
Therefore, proper adaptation and mitigation poli-
cies are designed to overcome the impacts of 
climate change on health. The policies may in-
clude improving awareness through education, 
use of technology in weather forecasting and 
warning system, disaster management vigilance 
system, proper medication and better town plan-
ning policies.  
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