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Introduction 
 
The acquired immunodeficiency syndrome 
(AIDS) continues to be a major global public 
health issue. Since the start of the epidemic, an 

estimated 77.3 million people have become in-
fected with HIV and 35.4 million people have 
died of AIDS-related illnesses. In 2017 an esti-

Abstract 
Background: The present study aimed to estimate the survival of HIV-positive patients and compare the 
accuracy of two commonly used models, Shared Random-Effect Model (SREM) and Joint Latent Class Model 
(JLCM) for the analysis of time to death among these patients. 
Methods: Data on a retrospective survey among HIV-positive patients diagnosed during 1989-2014 who re-
ferred to the Behavioral Diseases Consultation Center of Mashhad University of Medical Sciences was used in 
this study. Participants consisted of HIV-positive high-risk volunteers, referrals of new HIV cases from pris-
ons, blood transfusion organization and hospitals. Subjects were followed from diagnosis until death or the 
end of study. SREM and JLCM were used to predict the survival of HIV/AIDS patients. In both models age, 
sex and addiction were included as covariates. To compare the accuracy of these alternative models, dynamic 
predictions were calculated at specific time points. The receiver operating characteristic (ROC) curve was used 
to select the more accurate model.  
Results: Overall, 213 patients were eligible that met entry conditions for the present analysis. Based on BIC 
criteria, three heterogeneous sub-populations of patients were identified by JLCM and individuals were catego-
rized in these classes (“High Risk”, “Moderate Risk” and “Low Risk”) according to their health status. JLCM 
had a better predictive accuracy than SREM. The average area under ROC curve for JLCM and SREM was 
0.75 and 0.64 respectively. In both models CD4 count decreased with time. Based on the result of JLCM, men 
had higher hazard rate than women and the CD4 counts levels of patients decreased with increasing age. 
Conclusion: Predicting risk of death (or survival) is vital for patients care in most medical research. In a het-
erogeneous population, such as HIV-positive patients fitting JLCM can significantly improve the accuracy of 
the risk prediction. Therefore, this model is preferred for these populations.  
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mated 36.9 million people were living with HIV 
with a global HIV prevalence of 0.8% among 
adults. The vast majority of people living with 
HIV are located in low-and middle- income 

countries. In Iran, there were 66,000 (37,000-
120,000) people living with HIV in 2016 with 
5,000 (1,400-13,000) new HIV infections and 
4,000 (2,500-6,200) AIDS-related deaths (1). 
In many medical and epidemiological researches, 
patients are often followed up over time and lon-
gitudinal measurements are recorded until the 
time to event of interest (2). In such studies, the 
association between the survival of patients and 
longitudinal markers are common of interest. For 
example, in AIDS clinical trials, CD4 count is the 
most important clinical measurement that indi-
cates disease progression among HIV/AIDS pa-
tients earlier than disease or death (3). We can 
use this extra information to improve the accura-
cy of survival prediction (4–6). A common 
framework to model this type of data is to jointly 
model the longitudinal trajectory of the marker 
and the time to event.  
There are several advantage of the joint models 
in the literature. Modeling the longitudinal bi-
omarkers and time-to-event data separately can 
lead to biased estimates when the longitudinal 
process is correlated with time-to-event process 
(7). Joint models can improve the efficiency of 
statistical inferences, prediction and reduces bias 
by accounting for the association between the 
marker and the time-to-event (8,9). Moreover, 
the one of important advantage of joint modeling 
is that the impact of each covariate in the longi-
tudinal model and survival model can be exam-
ined separately (10). Therefore, joint modeling is 
a powerful methodology that becoming increas-
ingly essential in cancer, AIDS, and other medical 
studies not only with regard to better understand-
ing disease processes but also in the growing field 
of personalized medicine (11–13).  
Two commonly used joint models in the litera-
ture are Shared Random Effect Model (SREM) 
and Joint Latent Class Model (JLCM) (14,15). A 
fundamental assumption of SREM is that the 
population is homogeneous, i.e. all individuals 
follow a single mean trajectory. However, in 

many medical fields, patients consist of some 
heterogeneous subgroups that rule out this as-
sumption. This heterogeneity may be due to un-
observed risk factors such as gene factors or un-
derlying diseases (16–18). To overcome this limi-
tation, JLCM assumes that the population con-
sists of several homogeneous latent sub-groups in 
which the subjects share the same marker trajec-
tory and the same risk of the event. While the use 
of this model in the cases of heterogeneous pop-
ulation can increase the accuracy of the predic-
tion, few studies have used this model (17,19). 
In the present study, we aimed to estimate the 
survival of HIV-positive patients by joint model-
ing of time to death and longitudinal CD4 mark-
er. Since progression of many diseases such as 
HIV/AIDS is heterogeneous among patients 
yielding different sub-populations, we have used 
a JLCM in the analysis of this data. Furthermore, 
we compared the accuracy of this model with 
SREM in discriminating between patients who 
will and patients who will not experience the 
event of interest. To our knowledge, the accuracy 
comparison of these two models has not been 
investigated among HIV-positive patients, using 
history of time-to-death and CD4 measurements, 
and given that interest is on predicting death 
within a given time window of interest. 
 

Materials and Methods 
 
Study design and participants  
This study was a retrospective survey among 
HIV-positive cases diagnosed during 1989-2014 
who referred to the Behavioral Diseases Consul-
tation Center (BDCC) of Mashhad University of 
Medical Sciences in the Khorasan-Razavi Prov-
ince, Iran. Participants included in the study con-
sisted of 1) high-risk behavior volunteers with 
positive HIV/AIDS test; 2) referrals of new HIV 
cases come from various organizations such as, 
Mashhad prisons, blood transfusion organization 
and hospitals. All patients were followed from 
diagnosis until death, loss to follow-up, or the 
end of the study (Aug 22, 2014). 
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For all participants after pretest counseling, a 
blood specimen was collected. Initially, a rapid 
test was performed as a screening. If the result of 
the rapid test was positive, ELISA and Western 
Blot testing was done as the confirmatory test 
following the national HIV testing algorithm 
(20). All subjects completed a structured ques-
tionnaire in a face-to-face interview. Patient’s in-
formation was strictly confidential. Date of HIV 
diagnosis was identified as the date when a pa-
tient was first diagnosed with HIV. Date and 
cause of death were extracted from death regis-
tration system. The subjects were included to 
participants of Iranian nationality who had posi-
tive confirmatory HIV-test results and recorded 
at least two CD4 measurements.  
The current study was approved by the ethical 
committee of Mashhad University of Medical 
Sciences in Iran (IR.MUMS.REG.1392.807). 
 
Statistical analysis 
Time-to-death was computed as the time elapsed 
between diagnosis and death due to HIV/AIDS 
in years. Deaths due to other causes were consid-
ered as censor. The survival times were right-
censored for subjects that were still alive at the 
end of the study. Because of the shape of distri-
bution of CD4 cell count was right-skewed; 

therefore we used the CD4
1

4⁄  cell count values 
(6). The subjects with less than two CD4 meas-
urements were removed from the study list wise. 
We included the same covariates (age, sex, addic-
tion) in both joint models. These covariates had 
no missing values.  
The data was analyzed using joint modeling of 
longitudinal marker (CD4 cell count) and time-
to-event (HIV death). The three steps for defin-
ing a joint model were: i) a model for the marker 
trajectory, usually a mixed model; ii) a model for 
the time-to-event, usually a proportional hazard 
model; and iii) linking both models using a shared 

latent structure (17). The baseline hazards, 𝜆0(𝑡), 
were parameterized by proportional Weibull haz-
ard functions for both models. Estimation of 
models’ parameters was based on maximization 

of the log-likelihood using the robust Marquardt 
algorithm. 
 
Shared Random-Effect Model 
First, we fitted a linear mixed model for longitu-
dinal sub-model and a proportional hazard model 

for survival sub-model. We let 𝑌𝑖(𝑡𝑖𝑗) denote the 

longitudinal response for the 𝑖 th patient ( 𝑖 =
1,…,𝑛)  obtained at different time points 𝑡𝑖𝑗 >

0,(𝑗 = 1,…,𝑛𝑖). 

𝑌𝑖(𝑡𝑖𝑗) = 𝛽0 + 𝛽1𝑠𝑒𝑥𝑖 + 𝛽2𝑎𝑑𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖

+ 𝛽3𝑎𝑔𝑒𝑖 + 𝑏𝑖𝑜 + (𝛽4 + 𝑏𝑖1)

× 𝑡𝑖𝑗 + 𝜀𝑖(𝑡𝑖𝑗) 

= 𝑚𝑖(𝑡𝑖𝑗) + 𝜀𝑖(𝑡𝑖𝑗) 

Where the 𝛽  parameters are fixed-effects and 

𝑏𝑖𝑜 and 𝑏𝑖1 parameters are random-effects having 
a bivariate normal distribution with mean zero 

and covariance matrix 𝐵, i.e., (𝑏𝑖0 ,𝑏𝑖1)~𝑁(0,𝐵). 
Random-effects were included to incorporate 
individual variation in the intercept and linear 

slope. The parameters 𝛽 were called fixed-effects.  
 

The error terms  εi(tij)  were assumed to come 

from a normal distribution with mean zero and 

variance 𝜎2 . The random-effects were assumed 
independent of the error terms. We considered a 
proportional hazard model for survival analysis. 
SREM flexibly links the longitudinal and the sur-
vival process via the random effects 

(𝑏𝑖𝑜 𝑎𝑛𝑑 𝑏𝑖1) as follows (21–26): 
 

𝜆𝑖(𝑡) = 𝜆0(𝑡)𝑒𝑥𝑝(𝛼1𝑠𝑒𝑥 + 𝛼2𝑎𝑑𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖

+ 𝛼3𝑎𝑔𝑒𝑖 + 𝛼4𝑏𝑖𝑜 + 𝛼5𝑏𝑖1) 
 
Joint Latent Class Model  
Second, we modeled a JLCM to distinguish dif-
ferent profiles of CD4 trajectories among HIV-
positive patients. Our JLCM had three ingredi-
ents: class membership, the longitudinal bi-
omarker trajectories, and the hazard for the time-
to-event process. We assumed that each patient 
belongs to one of g latent classes. Patients with 
similar characteristics and trend of biomarker 
were assumed to belong to the same class. After 
fitting the model, each patient is assigned to the 
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class with higher posterior probability of mem-
bership. A shared random effect model is used to 
describe the individuals’ trajectories within each 
sub-population (2). Conditionally on each latent 
class (g), we modeled the CD4 trajectory of sub-
ject i by 
 

𝑌𝑖(𝑡𝑖𝑗)
|𝑐𝑖=𝑔

= 𝛽0𝑔 + 𝛽1𝑠𝑒𝑥𝑖 + 𝛽2𝑎𝑑𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖

+ 𝛽3𝑎𝑔𝑒𝑖 + 𝑏𝑖𝑜|𝑐𝑖=𝑔 + 

(𝛽1𝑔 + 𝑏𝑖1|𝑐𝑖=𝑔) × 𝑡𝑖𝑗 + 𝜀𝑖(𝑡𝑖𝑗) 

With    (𝑏𝑖0|𝑐𝑖=𝑔,𝑏𝑖1|𝑐𝑖=𝑔)~𝑁(0,𝜎𝑔
2𝐵) 

Here, the latent class membership for each sub-
ject i was defined using a categorical latent varia-

ble 𝑐𝑖, which equals g if subject i belongs to latent 
class g (g= 1, …, G). We considered an unstruc-
tured variance-covariance matrix of the random 
effects which are the same over latent classes. 
Hazard of death was modeled as follows: 
 

𝜆𝑖(𝑡|𝑐𝑖 = 𝑔) = 𝜆0(𝑡)𝑒𝑥𝑝(𝛼1𝑠𝑒𝑥𝑖

+ 𝛼2𝑎𝑑𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖 + 𝛼3𝑎𝑔𝑒𝑖) 
Moreover, we assessed the conditional independ-
ence (CI) assumption in JLCM. This fundamental 
assumption considered independence between 
the longitudinal measurements and the time-to-
event given the latent classes. Next step was to 
obtain the optimal number of classes that could 
explain the heterogeneity of the population. We 
successively estimated models with 1, 2, 3 and 4 
latent classes. The optimal number of classes was 
defined by the model with the lowest BIC (27).  
 
Model comparison using dynamic prediction 
accuracy 
An important characteristic of joint models ap-
proach, which gains increasing interest in recent 
years, is that predictions have a dynamic nature, 
that is, as time progresses, additional longitudinal 
measurements are recorded for the patient, and 
the predictions can be updated utilizing the new 
information. Therefore, we can obtain the dy-
namic personalized prediction of future longitu-
dinal outcome trajectories and risks of survival 
events at any time, given the subject-specific out-

come profiles up to the time of prediction 
(24,28).  
We computed subject-specific predictions at spe-
cific times s = 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 
6.5, 7, 7.5 and 8 years with a prediction window 
of t = 3 years for all subjects in dataset. For each 
time s, dynamic predictions were computed for 
JLCM and SREM. To compare the predictive 
accuracy of a joint model, we computed ROC 
curves based on dynamic prediction. Models 
were fitted using the “lcmm” and “frailtypack” 
packages in R.3.4.4. 
 

Results 
 
After excluding non-eligible subjects the final 
analyses consisted of 213 HIV-positive patients 
that met the eligibility criteria over the period 
1989-2014. The median age of patients was 37.94 
yr (interquartile range (IQR) =10.82). The higher 
percentage of patients were male (81.7%) with a 
median age of 38.28 yr (IQR=10.27). The median 

of baseline CD4 cell counts was 397 cells/𝑚𝑚3 
(IQR=380). Follow-up times varied between in-
dividuals and in total 1426 measurement occa-
sions were available with a median number of 

visits per subject of 5 (IQR= 6). During the fol-
low-up, 51 patients (23.9%) died.  
Table 1 shows the result of fitting SREM. As ex-
pected, the coefficient for the time effect has a 
negative sign indicating that on average the 
square root CD4 cell counts declined in 

time (�̂�4 = −0.079, P<0.001). For the random 

effects, we could observe that there was greater 
variability between patients in the baseline levels 

of CD4 (𝜎2 = 0.466) than in the evolutions of 

the marker in time (𝜎2 = 0.009). Here two pro-
cesses (longitudinal and survival) were linked via 
the random intercept and slope of the longitudi-
nal trajectory. This association was significant for 
the random intercept implying that with the in-
crease of individual deviation from the popula-
tion average CD4 counts, the risk of death de-

creased as well (�̂�4𝑏0
= -1.013, P<0.001). More-

over, this association for the random slope was 

significant (�̂�5𝑏1
=  -6.410, P<0.001) and estab-
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lished a need for a joint model to analyze the da-
ta. Sex and addiction variables were significantly 

effective on the average CD4 counts but in sur-
vival part only age was significant.  

 
Table 1: Estimation results of SREM model 

 

Model Parameter Estimate Standard Error P-value 
Longitudinal Part 

 Intercept 4.825 0.338 <0.001 
Time (years) -0.079 0.010 <0.001 
Sex (female) 0.263 0.096 0.006 
Addiction* -0.197 0.090 0.029 
Age (years) -0.010 0.009 0.225 

Survival Part 
 Sex (female) -1.243 0.756 0.100 

Addiction* -0.944 0.771 0.220 
Age (years) -0.045 0.021 0.032 

 �̂�4𝑏0
 -1.013 0.269 <0.001 

 �̂�5𝑏1
 -6.410 1.228 <0.001 

*Addiction: subjects without history of addiction   

 
To assess the optimal number of classes in 
JLCM, we specified four models with differing 
numbers of classes. The JLCM with the lowest 
BIC included two latent classes but the condi-

tional independence assumption was rejected for 
this model so that the model with three latent 
classes for which the CI assumption was not re-
jected (P=0.5801) was preferred (Table 2).  

 
Table 2: Comparison of BIC of JLCMs, with a total number of classes varying from 1 to 4 

 

Joint Latent 
Model 

Likelihood P BIC Score Test 
(P-value) 

Latent class proportion (%) 

G=1* -1547.86 14 3170.77 22.326(<0.001) 100 
G=2 -1519.09 21 3150.76 14.505(<0.001) (84.51,15.49) 
G=3 -1505.32 28 3160.76 1.089(0.5801) (9.39,37.56,53.05) 
G=4 -1489.96 35 3167.57 2.092(0.3513) (12.68,29.58,2.35,55.4) 

*G= number of classes 

 
After identifying the number of latent classes, we 
estimated the full model which included the co-
variate variables. As the aim was to propose a 
dynamic prognostic tool, we chose to include the 
same covariate variables in all parts of the JLCM 
and SREM. Table 3 reports the estimates for fit-
ting JLCM. Similar to SREM, the coefficient for 
the time effect has a negative sign indicating that 
on average the square root CD4 cell counts de-

clined in time in three classes. This decrease in 
CD4 cell counts over time in class 1 is worse 

than other classes (�̂�11 = −0.388) which indi-
cates deterioration in the health of individuals in 
this class. Men had higher hazard rate than wom-

en  (exp(2.375)=10.75,  p-value=0.010). Also, the 
CD4 counts levels of patients decreased with in-

creasing age (�̂�2 = −0.016, P=0.009). 
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Table 3: Estimation results of JLCM for 3-class model 

 

Model Parameter Estimate Standard Error P-value 
Fixed effects in the class-membership model* 
 intercept class1 1.211 1.835 0.509 

intercept class2 4.563 1.835 0.013 
Sex class1 (female) -1.495 1.092 0.171 
Sex class2 (female) -2.186 1.298 0.092 
Addiction** class1 0.819 1.008 0.416 
Addiction** class2 0.300 1.188 0.801 
Age class1 (years) -0.070 0.043 0.102 
Age class2 (years) -0.118 0.043 0.007 

Survival Part 
 Sex (female) -2.375 0.918 0.010 

Addiction** -0.341 0.813 0.675 
Age (years) 0.021 0.029 0.481 

Longitudinal Part 
 intercept class1 4.370 0.323 <0.001 

intercept class2 5.263 0.220 <0.001 
intercept class3 5.107 0.297 <0.001 

Time class1(years) -0.388 0.070 <0.001 
Time class2 (years) -0.163 0.031 <0.001 
Time class3(years) -0.016 0.016 0.320 

Sex (female) 0.204 0.151 0.177 
Addiction** -0.176 0.141 0.212 
Age (years) -0.016 0.006 0.009 

*the class of reference is the last class 
**Addiction: subjects without history of addiction  

 
Class-specific predicted survival functions, dis-
played in Fig.1 show a large latent class (class 3) 
representing 53.05% of the subjects with a very 
small risk of death over years.  
 

 
 

Fig. 1: Class-specific predicted survival curves ac-
cording to time in the 3-class model 

 
Class 2 and class 1 (representing respectively 
37.56%, 9.39% of the subjects) correspond to 
different profiles of CD4 trajectory associated 
with risks of death from moderate to intense. 
Based on our interpretation of the results, we 
labeled these classes as “High Risk” (class1), 
“Moderate Risk” (class2) and “Low Risk” 
(class3). We also examined how precisely the 3-
class latent model assigns subjects to classes. The 
3-class latent model provided very good discrim-
ination with mean maximal posterior probabili-
ties of subjects classified respectively, 0.84, 0.80 
and 0.84 for classes 1 to 3.  
To verify whether the model predicted correctly 
the number of observed events, we considered 
the martingale residuals. In a well model, a 
smoothing curve added to a graph should be ap-
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proximately overlapping with the horizontal line 

y=0 (Fig. 1 in supplementary) (29). Moreover, for 
longitudinal outcome (CD4), marginal and condi-

tional residuals were plotted (Fig. 2  in supple-
mentary). All figures demonstrate a good fit for 
both the longitudinal and the time-to-event data.  
We assessed how well the model performs in 
terms of discriminating between subjects who 
were going to experience death, and those who 
were not. We calculated AUCs (s, t) at specific 
point times and the time windows of interest will 
be 3 years. Figure 2 shows that estimated AUCs 
for both models corresponding to the two pre-
diction models were high (range from 0.56 to 
0.84). Clearly, dynamic predictions for JLCM had 
a better predictive accuracy than SREM. The av-
erage area under ROC curve for JLCM and 
SREM was 0.75 and 0.64 respectively.  
 

 
 

Fig. 2: Comparison of predicted accuracy of the two 
joint models within time window (s,s+t) when 

s={1,1.5,2,2.5,…,8} and t=3 years 

 

Discussion  
 
In present study, we considered two popular ap-
proaches of joint modeling of longitudinal data 
and time-to-event for prediction survival in HIV-
positive patients using CD4 cell counts and time-
to-death, accounting for individual patient's het-
erogeneity. We used dynamic prediction to com-
pare these models and selecting the optimal 
model. When the history of patient’s information 
is considered, the accuracy of clinical decisions 
may be improved. Thus, it is useful to dynamical-

ly predict patients’ risk of death using disease his-
tory.  
So far, most of the literature in the joint model-
ing have focused on SREM (12,14,24,30). The 
JLCM and assessment of its power have received 
less attention. This model considers the popula-
tion of subjects as heterogeneous that consist of 
the homogenous classes of subjects that have 
same longitudinal marker and same risk of event 
(17,18). 
Our finding indicated that predictions of death 
using repeated measurements of CD4 are better 
for the JLCM than the SREM. Therefore, JLCM 
had a good predictive accuracy than SREM and 
would be more appropriate for this heterogene-
ous population. The joint model showed that the 
hazard of death depended on a longitudinal pro-
cess, i.e., patient’s CD4 count significantly impact 
on his or her survival time. Moreover, the result 
of the article confirmed that HIV/AIDS patients’ 
population was not homogenous. Individuals 
were categorized in three classes (“High Risk”, 
“Moderate Risk” and “Low Risk”) according to 
their health status. This fact enables clinicians to 
make better medical decisions for the care and 
treatment of patients in order to increase their 
survival. Time had a negative effect on CD4 lon-
gitudinal measurements in the two approaches. 
This means that CD4 count decreased with time. 
The results of this study is consistent with other 
works on HIV/AIDS dataset (18,31). 
Because of the dynamic nature of these models, 
evaluating the predictive accuracy of joint models 
using prognostic tools is complex. Recently, there 
are some studies in this area (6,32,33). However, 
few studies have been conducted to compare the 
accuracy of these two models. Accurate predic-
tion of the future trajectory is helpful for clini-
cians to monitor patients' disease progression, 
make the informative medical decision and can 
advance the design of future studies (32,34) 

.Moreover, the result of this paper was consistent 
with a research carried out on prostate cancer. In 
this work, the accuracy of two models was com-
pared using other predictive accuracy measure-
ments (Brier score (BS) and expected prognostic 
observed cross-entropy (EPOCE)) (17). We have 
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mainly focused on discrimination (AUC) rather 
than calibration (BS) because even if a joint mod-
el is not well calibrated, there are some approach-
es used to improve the accuracy of predictions 
without distorting discrimination (35).  
In this study, we only explored the probability of 
death due to HIV/AIDS. However, it is also 
possible to predict the competing risk along with 
the risk of death. The participants of this study 
were HIV-positive people referring to BDCC for 
receiving treatment. Due to most patients suffer 
from addiction or behavioral problems, follow-
ing-up them and recording CD4 counts has many 
problems. Therefore, many patients were exclud-
ed from the study due to the need for at least two 
repeated measurement times. Moreover, the re-
sults of this study were illustrated using a dataset 
and may not be generalized to all populations. 
This was for illustrative purposes only. For future 
works, we extend this methodology by simulation 
under various scenarios (different sample size, 
different missing algorithms).   
 

Conclusion 
 
Joint modeling of longitudinal biomarkers and 
time-to-event data for analyzing AIDS clinical 
trials using CD4 count measurement as an im-
portant predictor of survival will result in unbi-
ased and more efficient estimates. Heterogeneity 
is very common in most societies and in particu-
lar in medical research. In practice, patients often 

have different profiles of the disease. Therefore, 
ignoring this issue can lead to biased results and 
misleading. Estimating the prediction of patients 
based on their demographic, biological, or disease 
characteristics is an important issue, as it may be 
used for guiding medical decisions. Therefore, 
the use of effective and flexible modeling ap-
proach, such as JLCM, can help physicians to 
make better decisions and to obtain a clear pic-
ture of diseases for patient-specific treatment 
strategies and future clinical interventions. 
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Fig. 2 : (A) subject-specific residuals versus subject-specific predictions from the 3-class JLCM. (B) Normal QQ Plot 
for subject-specific residuals from the 3-class JLCM (C) subject-specific residuals versus subject-specific predictions 

from SREM. (D) Normal QQ Plot for subject-specific residuals from SREM 
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