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Introduction 
 
Historically, the most effective public-health pre-
vention against infectious disease is vaccination. 
Development of an effective vaccine against any 
disease is a major breakthrough to control the dis-
ease. There have been tremendous efforts to de-

velop vaccines against infectious and non-infec-
tious diseases, but yet no vaccine is available 
against many infectious diseases. The develop-
ment of a new vaccine from theory to practice is a 
complex process task. Preclinical studies to de-

Abstract 
Background: In a new approach, computational methods are used to design and evaluate the vaccine. The aim 
of the current study was to develop a computational tool to predict epitope candidate vaccines to be tested in 
experimental models.  
Methods: This study was conducted in the School of Allied Medical Sciences, and Center for Research and 
Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran in 2018. The random 
forest which is a classifier method was used to design computer-based tool to predict immunogenic peptides. 
Data was used to check the collected information from the IEDB, UniProt, and AAindex database. Overall, 1,264 
collected data were used and divided into three parts; 70% of the data was used to train, 15% to validate and 15% 
to test the model. Five-fold cross-validation was used to find optimal hyper parameters of the model. Common 
performance metrics were used to evaluate the developed model.  
Results: Twenty seven features were identified as more important using RF predictor model and were used to 
predict the class of peptides. The RF model improves the performance of predictor model in comparison with 
the other predictor models (AUC±SE: 0.925±0.029). Using the developed RF model helps to identify the most 
likely epitopes for further experimental studies.  
Conclusion: The current developed random forest model is able to more accurately predict the immunogenic 
peptides of intracellular parasites.  
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velop a vaccine are a long process, time-consum-
ing, needs enough funds and infrastructure, which 
are not available in the regions of the world, which 
suffer from the infectious diseases the most. 
Emerging modern technology and computational 
models in biomedicine have provided new hori-
zons for discovering, and designing vaccines. Us-
ing in-silico approach, the designed epitopes might 
be used and tested experimentally in the preclinical 
setting. Nowadays, using in-silico approach has 
been advanced rapidly and assists in different as-
pects of biomedical sciences. In in-silico approach, 
vaccine logically is designed using computational 
algorithms and evaluate using computer simula-
tion (1–3). Using in-silico approach is a shortcut 
method to identify novel immunogenic peptides 
for the development of a vaccine prior to in vitro 
and in vivo evaluation.  
Several computational methods, including binding 
motifs (BM), quantitative matrices (QM), machine 
learning algorithms (ML), evolutionary algorithms, 
linear programming and hybrid methods are usu-
ally used to predict the class of peptides (4–6). The 
computational methods mostly distinguish the 
peptides based on amino acid properties. Among 
the computational methods, ML is more com-
monly used to identify the class of peptides and 
design epitope-based vaccines for the prevention 
and/or possibly treatment of infectious and non-
infectious diseases (7). Some of the common su-
pervised ML algorithms for pattern recognition 
include support vector machine (SVM), neural 
networks (NN), naïve Bayes, decision tree (DT), 
random forest (RF), and hybrid methods (8,9). 
Among the above-mentioned methods, RF is the 
more popular ML approach, due to the fact that it 
is easy to understand, handy to use, interpretation 
and robustness. In RF algorithm, various decision 
trees with a high diversity between the individual 
trees were generated in the forest. Every one of 
the created decision trees independently predicts 
the class of the peptides. The diversities of the 
trees are controlled using bootstrap replacement 
sampling from the training dataset and a subset of 
the features is randomly selected. Then, the final 
decision is made based on the majority of the 
votes of the aggregated predicted trees (10–15).  

The aim of the current study was to develop com-
putational tools based on ensemble random forest 
machine learning model to facilitate Th1 epitopes 
identification to be used as the vaccine candidate 
for intracellular parasites.  
 

Materials and Methods 
 

The methods used in the current study for the data 
collection, peptide properties extraction, data pro-
cessing, and the development of RF model are as 
follows: 

 
Data resources 
The sequences of the proteins were retrieved from 
UniProtKB/Swiss-Prot database 
http://www.uniprot.org/ (16,17). T cell epitopes 
were retrieved from Immune Epitope Database 
(IEDB) http://www.iedb.org/ (18). Access to 
both databases are free. The date of the data re-
trieval is Apr 18, 2017.  

 
Data preparation  
From 6,223 MHC class II T cell epitopes retrieved 
from IEDB database, 3,200 epitopes with a length 
of 9- to 21-mer were selected from 524 antigens pre-
viously showed to be immunogenic and as such 
were marked as positive assays epitopes. Gibbs 
sampler method (19,20) was used to align 9-mer 
core-binding motif and stored as epitope dataset 
class. To select non-epitope peptides, the proteins 
which contain epitopes with define sequences 
were retrieved from UniProtKB/Swiss-Prot data-
base, after removing the epitopes, the remaining 
sequences were scanned using windows size of 9-
mer to extract non-epitope peptides. The non-re-
dundant extracted peptides were stored as the 
non-epitope dataset class. Two stored datasets 
were used to train, validate and test the RF model. 

 
Peptide descriptor extraction 
The properties used to develop the model are pep-
tide AA composition (AAC) and AA physico-
chemical properties (AAPP). The AAC for each 
peptide was calculated with the following equation 
where k is one of each 20 AA: 
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𝐴𝐴𝐶(𝑘) =  
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝐴𝐴(𝑘)

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑒𝑝𝑡𝑖𝑑𝑒𝑠
, 𝑘

= 1, … ,20 𝐴𝐴 𝑖𝑛𝑑𝑒𝑥 
The AAPP used to identify the class of peptide are 
as follows: 
The distribution of residue AA in each position, 
aliphatic index (21), hydropathy scale (22), polarity 
scale (23), isoelectric point (PI) (24), net charge, 
number of bulky AA (Leu, Ile, Phe, Try, Tyr, Val), 
number of less bulky AA (Ala, Arg, Asp, Asn, Cys, 
Glu, Gln, Gly, His, Lys, Met, Pro, Ser, Thr) (25), 
chemical characteristic of the peptides (aromatic, 
aliphatic, sulfur, hydroxyl, and amide), and the 
number of potential side-chain hydrogen bonds 
(donor, acceptor, both, and Non) (26).  
 
Model development 
The MATLAB ver. 2014 software was used to de-
velop the RF model, RF is an ensemble-learning 
approach usually used for classification and regres-
sion. RF combines various classifications DT is 
used to produce a more accurate classification. 
Bootstrap aggregation algorithm was used to cre-
ate the ensemble DT classifiers. Each classifier in-
dependently predicts the class of peptides and the 
majority vote on the DT classifiers defines class of 
peptides in RF model. In this study, Gini’s Diver-
sity Index (GDI) was used to measure the node 
impurity, and feature with the highest GDI was se-
lected as the split feature in the node. The perfor-
mance of RF algorithm depends on the tuning of 
a number of hyper parameters. The optimal hyper 
parameters were distinguished using assign multi-
ple values to develop a suitable model. The 5-fold 
cross-validation was used to evaluate and tune the 
hyper parameters. The values assigned to each pa-
rameter are as follows: The maximum number of 
random ensemble trees (n-Tree) in RF model is set 
to 2,000. The number of predictors used to split 
the appropriate node (m-try) was set to 9 (square 
root of features number in the dataset). The mini-
mum size of the leaf node (node-size) was set to 2. 
The maximum growth depth (tree-Depth) for each 
RT was set to 100.  
 
 

Performance evaluation 
The collected data set was randomly divided into 
three parts; 70% of the data was used to train; 15% 
of the data was used to validate, and the rest 15% 
of the data was used to test the model. The per-
formance of the model was calculated by accuracy, 
sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), error rate, 
and area under the ROC (AUC) (27–29). 
 
Statistical analysis 
The Cohen's kappa statistics was used to quantify 
degree of agreement and assess reliability of the 
model. The Pearson’s chi-square, McNemar’s, 
Wald, and Z test were used to analysis of data 
(30,31). The probability values less than 0.05 were 
considered statistically significant. The statistical 
analyses were performed using SPSS 16.0 (SPSS 
Inc., Chicago, IL, USA). 
 

Results 
 
From the 3,200 epitopes, 1,264 non-redundant 9-
mer core-binding motif and 1,264 similar non-
epitope peptides were used to train, validate, and 
test the model. 
The feature selection is an important step to de-
velop RF model. In this step, the impurity features 
were included and the noisy and redundant fea-
tures were excluded to improve the performance. 
Figure 1 shows the feature importance score dis-
tribution with the positive score of the peptide 
properties. From 59 features, twenty-seven fea-
tures are positive score and fourteen are detected 
as having the greatest effect to discriminate the 
class of peptides (criteria greater than 40% was 
considered as cut off). The AA residue at position 
1 is the highest rank feature to identify the class of 
peptide with a 99% score. The next feature is AA 
residue at position 9 with 91% importance score. 
The number of alanine and glycine are 82%, and 
70% importance, respectively. The AA residue at 
position 6 is 64% importance score. The number 
of bulky AA and glutamic acid in the peptide is 
53%, and 48% importance, respectively. The PI 
index is a 46% importance score. The number of 
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bulky less and aromatic AA in the peptide is 45%, 
and 42% importance, respectively. The numbers 
of isoleucine, phenylalanine, and valine AA in the 

peptide was 40% importance. The other features 
in the model are less important, with percentages 
of 34% to 5% (Fig. 1). 

 

 
 

Fig. 1: Features importance plot 

 
The accuracy of the RF model to train, validate, 
and test the dataset are 96.7%, 95.8%, and 91.6%, 
respectively. Therefore, only at maximum 8.4% of 
the data was incorrectly classified.  
The minimum sensitivity and specificity for the 3 
datasets are 92.6% and 90.5%, respectively, which 
means the RF model correctly detects at least 

92.6% of the epitopes and 90.5% of non-epitopes. 
The minimum PPV and NPV for each of the 3 
datasets are 90.7% and 92.5%, respectively, that 
means the RF model categorized the epitopes cor-
rectly at least in 90.7% of the epitopes in this class 
and categorized correctly at least 92.5% of non-
epitope class in this class (Table 1). 

 

http://ijph.tums.ac.ir/


Iran J Public Health, Vol. 49, No.1, Jan 2020, pp.125-133  

129                                                                                                        Available at:    http://ijph.tums.ac.ir 

Table 1: Measures of performance RF model for each data set 

 

Partition 
 Train 

(n=884) 
 Validation 

(n=190) 
 Test 

(n=190) 
Accuracy  855 (96.72%)  182 (95.79)  175 (92.51) 

Error Rate  29 (3.28%)  8 (4.21%)  15 (7.49%) 
Sensitivity  97.51  97.89  92.63 
Specificity  95.93  93.68  91.58 
PPV  95.99  93.94  91.67 
NPV  97.47  97.80  92.55 
Kappa coefficient  0.934±0.012  0.916±0.029  0.842±0.038 

 
The area under the ROC curve that shows the ex-
pected performance of the RF model for the train 
dataset is 0.995±0.002 (95% CI: 0.99 to 1.0), vali-
date dataset is 0.958±0.021 (95% CI: 0.92 to 1.0), 
and the test dataset is 0.925±0.029 (95% CI: 0.87 
to 0.98) (Fig.2). The AUC values show that the RF 

model is able to discriminate the class of peptide 
in the three datasets (P<0.001). The value of Co-
hen's Kappa for the test dataset is 0.842 (95% CI: 
0.78 to 0.93), which means the results of RF de-
veloped model in 70.9% are reliable (P<0.001).  

 

 
 

Fig. 2: ROC curve and AUC for RF model 

 
Table 2 shows the description of the decision rules 
(DRs) extracted to classify the peptides, ordered 
by the rule accuracy. The developed RF model ob-
tained 6 rules with accuracy from 88% to 97%. 

The DRs 1, 4, 5, and 6 identified the non-epitope 
class with rule accuracy of 97%, 93%, 90%, and 
88% respectively. The DRs 2 and 3 identified the 
epitope class with rule accuracy of 97% and 95%, 
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respectively. The number of features in rules var-
ies from 10 to 17. 
Among the 17 features, the AA at position 1 and 
9 are the most predictive capacity in all the rules. 
The most frequent AA at position 1 in non-
epitope peptides is (D, E, G, H, K, N, Q, R, S, and 
T) and at position 9 is (A, C, D, E, G, H, K, M, N, 
Q, R, S, T, and V). The alanine at position 1 and 
glycine at position 9 in non-epitope class are non-
polar and others are polar AA residues. The most 
frequent AA at position 1 in epitope class is (A, C, 
F, I, L, M, S, V, and W) and at position 9 is (A, C, 
D, E, F, G, H, I, K, M, Q, R, and V). The glycine 
at position 1 is neutral and others AA are hydro-
phobic. The AA at position 9 is either of 3 hydrop-
athy class (hydrophobic, neutral, or hydrophilic) 
(Table2).  

Along with AA type in positions 1 and 9 at DR4, 
the number of bulky less AA greater than 6 and 
the number of alanine AA greater than 1 is indic-
ative of a non-epitope. Along with AA type in po-
sition 1 and position 9 at DR5, the number of 
bulky less AA greater than 5 is indicative that the 
peptide is a non-epitope. Along with AA type in 
position 1 and 9 at DR2, the AA type at position 
6 including (A, C, H, R, V) and PI of peptide be-
tween 3.7 to 6.5 is an indicative that the peptide 
belongs to non-epitope class. Along with AA type 
in position 1 and 9 at DR3, the number of aro-
matic AA greater than 0 is an indication that the 
peptide belongs to epitope class. 

 
Table 2: Top Decision Rules for identify class of peptide 

 

 

 

Discussion 
 
The in-silico approach is a proper strategy to de-
velop a novel epitope-based vaccine. In epitope-
based vaccine design, identification of immuno-
genic peptide is the first and critical step. Using, 
computational approaches in vaccinology assist 

the researcher to predict the most likely immuno-
genic peptides for further complementary experi-
mental studies which reduce the cost and the time 
to develop an effective vaccine. Many computa-
tional tools such as EpiTOP, MHCPred, ProPred, 
TEPITOPE, MHC2Pred, SVRMHC, SVMHC, 
RANKPEP, NetMHCII, and NetMHCIIpan 
have been developed to predict immunogenic 
peptides in a given protein. The performance of 

No Decision Rule Class 
Rule 

Accuracy 
1 (P1 = {D,E,H,K,N,R,S,T}) and 

(P9 = {D,E,G,H,K,N,Q,R,S,T,V}) 
Non 

Epitope 
0.978 

2 (P1={A,F,I,L,M,V,W}) and 
(P6={A,C,H,R,V}) and 

(P9={A,C,E,F,I,K,L,M,Q,R,S,V,W}) and 
(PI >= 3.7 and PI<=6.5) 

Epitope 0.970 

3 (P1 = {A,C,F,I,L,M,S,V,W}) and 
(P9 = {A,C,D,F,I,L,Q,S,V} and (Aromatic >= 

1.0) 

Epitope 0.949 

4 (P1 = {D,E,G,H,K,Q,R,S,T}) and 
(P9 = {A,C,D,E,G,H,K,M,N,Q,R,S,T,V}) and 

(Bulk-Less > 6.0) and (A > 1.0)) 

Non 
Epitope 

0.929 

5 (P1 = {D,E,G,H,K,N,Q,R,S,T}) and 
(P9 = {A,D,E,F,G,H,K,N,Q,R,S,T,V}) and 

(Bulk-Less > 5.0) 

Non 
Epitope 

0.900 

6 (P1 = {D,E,G,H,K,N,Q,R,S,T}) and 
(P9 = {D,E,G, K,N,Q,R,S,T}) 

Non 
Epitope 

0.879 
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the developed tools varies and dependent on the 
type of algorithms and dataset used. 
The EpiTOP and MHCPred tools use quantitative 
structure-activity relationship method (QSAR) to 
detect mathematical meaningful relationships be-
tween the peptide physicochemical properties, 
molecular structure and biological activities. The 
average of AUC for the EpiTop is 0.79 with a 
range of 0.72 to 0.89. MHCPred using a partial 
least squares multivariate statistical method to pre-
dict binder peptides to MHC molecules with over-
all accuracy of 0.79 (32,33). ProPred, uses quanti-
tative affinity matrix (QAM) method to identify 
protein-protein interactions (PPIs), The average 
of AUC for ProPred is 0.76 with a range of 0.66 
to 0.89 (34). TEPITOPE uses position-specific 
scoring matrix algorithms (PSSM) to score the 
conserved regions of the proteins. The average of 
AUC for TEPITOPE is 0.73 with a range of 0.67 
to 0.77 (35).  
MHC2Pred, SVRMHC, and SVMHC are SVM-
base methods with different kernel functions (lin-
ear, polynomial and RBF) to predict the class of 
the peptides. MHC2Pred uses matrix optimization 
technique (MOT) to detect 9-mer core-binding 
motif and predict promiscuous MHC class II 
binding core with overall accuracy of about 0.79 
(33,36). SVRMHC uses quantitative SVM regres-
sion method to predict peptide-MHC binding af-
finities with an average of AUC=0.786 and a range 
of 0.74 to 0.83 (37). SVMHC predicts MHC-bind-
ing peptides with an average of AUC=0.76 and a 
range of 0.66 to 0.86 (38,39).  
RANKPEP uses PSSM algorithms to score the 
conserved regions of the protein for both MHC 
class I and II molecules with an average of 
AUC=0.78 and a range of 0.54 to 0.93 (40). 
NetMHCII and NetMHCIIpan are network-
based (NN) ensemble methods. These methods 
estimate the optimal peptide binding-core motif 
and neuron weighted connection. NetMHCII uses 
a set of individual networks for each MHC class, 
and NetMHCIIpan uses a single public NN model 
to predict epitope. The average of AUC for 
NetMHCII is 0.79, and a range of 0.71 to 0.85, and 
NetMHCIIpan is 0.858 and a range of 0.75 to 0.96 
(41,42). 

The range of AUC tools mentioned above is (0.73-
0.86). The performance of RF developed model is 
at least 0.95 for the test dataset. The comparison 
AUC of mentioned tools and RF developed model 
showed that the performance of RF models is 
11% to 30% higher than the 10 mentioned mod-
els. Moreover, the kappa coefficient indicated that 
there is as strong agreement between the 190 pairs 
of the test dataset. All of these indices showed that 
the developed model has a proper performance to 
predict the class of peptides. 
The experimental studies on epitope of human 
showed that the epitopes contain hydrophobic, al-
iphatic or aromatic AA at positions 1, 4, 6, and 9 
(43,44). The hydrophobic AA is the priority at po-
sition 1 and 9 (45–47). Six extracted decision rules 
in RF models for discriminate to class of peptide. 
Based on the results of this study, the developed 
RF model is highly efficient in the prediction of 
parasite MHC class II T cell epitopes.  
 

Conclusion 
 

The random forest algorithm is a flexible, robust-
ness and accurate statistical approach. This 
method is able to handle unbalanced datasets; 
many input features without variable deletion, es-
timates important scores for each feature without 
any required assumption and restriction in the tra-
ditional statistical methods. These advantages 
make it the most common method for classifica-
tion of peptides. In the current study, an RF model 
was developed based on biochemical peptide 
properties to identify the class of peptides exist in 
a given protein. The performance measures of RF 
developed model improve in comparison with the 
common T-cell epitopes prediction tools. Accord-
ingly, using the RF model facilitates selection of 
most likely immunogenic epitopes for further 
complementary experimental studies.  
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