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Introduction 
 
Osteoarthritis (OA) is the most prevalent form 
of  arthritis, affecting millions of  people world-
wide. It is characterized by the degeneration of  
joint cartilage and the underlying bone, leading to 
pain, stiffness, and impaired movement (1). Epi-
demiological studies estimate that OA affects 
more than 240 million people globally, with a 

higher prevalence in older adults and women (2). 
Approximately 30%-65% of  the risk of  OA is 
genetically determined (3). The exploration of  
gene expression profiles in OA has opened a 
promising frontier in understanding the molecu-
lar mechanisms of  the disease and its progression 
(4).  

Abstract 
Background: We aimed to identify biomarkers associated with Osteoarthritis (OA) and evaluate their predic-
tive capabilities. 
Methods: Four synovial tissue datasets (GSE1919, GSE12021, GSE55235, GSE55457) and one peripheral 
blood mononuclear rcells (PBMC) dataset (GSE48556) were obtained. GSE55235 and GSE55457 were 
merged to conduct differential expression analysis and train machine learning algorithms. Predictive models 
were trained using a subset of genes and then validated on the other datasets. In addition, PBMC dataset was 
used to train predictive models using the same subset of genes, with the synovial tissue datasets serving as vali-
dation datasets. Finally, immune infiltration analysis was performed in the merged synovial tissue dataset using 
CIBERSORT.  
Results: RPA3, LAMA5, SAT1, and UCP2 were used to train machine learning algorithms. Predictive models 
performed well in synovial tissue datasets but faced challenges in the PBMC dataset, as models achieved high 
sensitivity but moderate specificity. However, models trained on the PBMC dataset exhibited high sensitivity 
and specificity in the four external validation datasets. SAT1 exhibited the highest impact on the model per-
formance. Immune infiltration analysis revealed significant differences in the expression of several immune 
cells, such as mast cells, between OA and control groups. In general, the four genes showed moderate to 
strong correlations with mast cells.  
Conclusion: While promising, our findings point to the need for further studies to validate biomarkers and 
improve the models' predictive power across diverse sample types. 
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Recent advances in genomics and bioinformatics 
have enabled researchers to identify specific gene 
expression patterns associated with OA, thereby 
explaining complex regulatory networks that lead 
to cartilage degradation and joint inflammation 
(5,6). By comparing the genetic signatures of  af-
fected tissues with those of  healthy controls, sci-
entists have begun to identify potential bi-
omarkers that could serve as early indicators of  
the disease (5,7). This molecular approach not 
only improves traditional diagnostic methods but 
also holds significant promise for the develop-
ment of  personalized therapeutic strategies. Early 
detection through gene expression profiling 
could facilitate timely interventions that slow the 
progression of  OA, mitigating irreversible joint 
damage. In addition, understanding the genetic 
factors that contribute to OA can aid in the strati-
fication of  patients, as treatment regimens can be 
tailored to individual risk profiles (8). Taken to-
gether, integrating genomic data into clinical 
practice represents a critical step towards a more 
proactive and preventive approach to managing 
OA, which ultimately results in improved patient 
outcomes and quality of  life. 
Despite advances in clinical diagnostics and imag-
ing, early detection remains problematic because 
conventional methods fail to capture the molecu-
lar events that precede overt joint damage. The 
integration of  machine learning algorithms in 
genomic research has the potential to deepen our 
understanding of  OA. Machine learning can han-
dle vast amounts of  genetic data, uncovering 
complex patterns and relationships that tradition-
al statistical methods might miss (9,10). Thus, this 
study aimed to identify potential biomarkers for 
OA through a comprehensive analysis of  gene 
expression profiles and immune cell interactions, 
thereby paving the way for improved early detec-
tion and personalized therapeutic strategies. 
 
Materials and Methods 
 
Data Collection 
The flowchart of the study is shown in Fig. 1A. 
The study utilized five gene expression datasets 

obtained from the Gene Expression Omnibus. 
The primary dataset used for training the models 
was the merged dataset consisting of GSE55235 
and GSE55457, each having 10 OA and 10 con-
trol samples. The first independent validation 
dataset (GSE1919) included 10 samples: 5 OA 
and 5 controls. GSE12021 was used as the sec-
ond independent validation dataset, it consisted 
of 10 OA and 9 control samples. The third inde-
pendent validation set, GSE48556, included gene 
expression data of peripheral blood mononuclear 
cells (PBMC) obtained from 106 OA and 33 con-
trol samples. 
 
Differential Expression Analysis 
Differentially expressed genes (DEGs) were ob-
tained from the training dataset (merged 
GSE55235&GSE55457) using the following cut-
off values: adjusted P-value (Benjamini-Hochberg 
procedure) <0.05 and |log FC| >0.5. In addi-
tion, gene ontology (GO) analysis (biological 
processes and cellular components) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis were performed using clus-
terProfiler and org.Hs.eg.db. T-test was utilized 
to calculate the P-value of gene expression levels 
between the OA and control groups (rstatix 
package).  
 
Machine Learning Analysis and Model Interpre-
tation 
Two methods were used for feature selection: the 
Least Absolute Shrinkage and Selection Operator 
(LASSO) and Random Forest (RF). The com-
mon genes identified by both feature selection 
methods were selected for model training. The 
following machine learning algorithms were used: 
logistic regression (LR), support vector machines 
(SVM), K-nearest neighbors (KNN), bagging 
with LR as the base estimator, and AdaBoost 
with LR as the base estimator. Hyperparameter 
tuning was performed using GridSearchCV to 
identify the optimal parameters for each model. 
Models were evaluated based on the following 
metrics: area under the receiver operating charac-
teristic curve (AUC), sensitivity, specificity, and 
F1 score (11). Permutation feature importance, 
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SHapley Additive explanation (SHAP), and Local 
Interpretable Model-agnostic Explanations 
(LIME) were used to interpret predictions.  
 
Immune Infiltration Analysis 
Immune infiltration analysis was performed using 
CIBERSORT. Immune cell types that were ex-
pressed in ≤20% of samples were excluded. Wil-
coxon signed-rank test was used to calculate dif-
ferences in cell expression between the OA and 
control groups of the training data. Spearman’s 
rank correlation was used to calculate the correla-
tion between paired immune cell types and be-
tween the most relevant genes identified by fea-
ture selection methods and immune cell types.  
 
Ethics approval 
Ethical review and approval were waived for this 
study because no humans were involved in this 
study.  
 
 
 
 

Results 
 
Differential Expression Analysis 
Prior to data analysis, five datasets were prepro-
cessed. Individually preprocessed GSE55235 and 
GSE55457 were merged into one dataset to in-
crease the sample size of the training dataset. To 
assess the presence of batch effects within the 
merged dataset, a PCA plot was constructed. As 
batch effects were clearly present, batch effects 
correction was conducted. Data distribution be-
fore and after preprocessing are shown in Fig. 
1B.  
Overall, 880 DEGs, among which 364 were 
downregulated and 516 were upregulated, were 
screened (Fig. 2A-B). GO analysis revealed that 
the identified DEGs were mainly enriched in cy-
tokine production, taxis as well as cell adhesion, 
and were mostly found in extracellular matrix and 
organelles’ membranes and lumens. According to 
KEGG analysis, genes were predominantly en-
riched in signaling pathways (MAPK and PI3K-
Akt), lipid and atherosclerosis, and rheumatoid 
arthritis (Fig. 2C). 

 

 
 

Fig. 1: (A) Flowchart of the study. (B) Boxplots of GSE1919, GSE12021, GSE48556, GSE55235, GSE55457, da-
tasets before and after preprocessing (background correction, normalization, log2 transformation, gene annotation 

and filtering). Bottom right corner: principal component analysis scatter plots of the merged dataset 
(GSE55235&GSE55457) before and after batch effects correction 
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Fig. 2: (A) Volcano plot. (B) Heatmap of the top 25 differentially expressed genes (sorted by P-value) (C) Enrich-
ment analysis word cloud of Gene Ontology biological processes (GO: BP), cellular components (GO: CC), and 

Kyoto Encyclopedia of Genes and Genomes (KEGG). Size represents gene count, color represents category, trans-
parency represents -log10 (P-value). All categories have a -log10 (P-value) > 2. (D) Venn diagram of genes identified 
by two feature selection tools. Four identified genes are RPA3, LAMA5, SAT1, and UCP2. (E) Boxplots of expres-
sion levels of four genes between the osteoarthritis group (red) and the control group (blue) across all datasets. P-
values < 0.05 are highlighted in red. (F) Heatmaps of fold changes of RPA3, LAMA5, SAT1, and UCP2 across all 

datasets 
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Model Training and Evaluation 
LASSO model identified 39 relevant genes, and 
RF classifier identified 95 genes. The common 
genes identified by both methods were selected 
for model training. There were four common 
genes found between both methods: RPA3, LA-
MA5, SAT1, and UCP2 (Fig. 2D). UCP2 was 
found to be significantly upregulated in OA pa-
tients compared to controls in synovial tissues 
but not in PBMC (Fig. 2E). Although expression 
levels of several genes, namely RPA3 and LA-
MA5, were found to be significantly different 
between the OA and control groups in all da-

tasets except for GSE1919. Additionally, 
heatmap of expression fold changes of the identi-
fied genes revealed a clear separation between 
OA and control samples in synovial tissue da-
tasets with the exception of GSE1919 (Fig. 2F). 
Five different machine learning algorithms were 
trained on the merged dataset using RPA3, LA-
MA5, SAT1, and UCP2 (Table 1 and Fig. 3A-C). 
In the first and second validation datasets, all five 
models, especially SVM and KNN, exhibited 
great predictive performance, characterized by 
high F1 score, specificity, sensitivity, and AUC.  
 

 
Table 1: Performance of machine learning algorithms trained on the merged GSE55235&GSE55457 dataset (syno-

vial tissue) 
 

Validation 
dataset 

Metrics Logistic 
Regression 

Support 
Vector Ma-

chines 

k-Nearest 
Neighbors 

Bagging 
(Logistic 

Regression) 

AdaBoost 

GSE1919 Sensitivity 0.8 1.0 0.8 1.0 0.8 
Specificity 1.0 1.0 1.0 1.0 1.0 
F1 score 0.83 0.91 0.91 0.83 0.83 

AUC 0.96 1.0 0.98 1.0 0.96 
GSE12021 Sensitivity 1.0 1.0 1.0 1.0 1.0 

Specificity 1.0 1.0 1.0 1.0 1.0 
F1 score 1.0 1.0 1.0 1.0 1.0 

AUC 1.0 1.0 1.0 1.0 1.0 
GSE48556 Sensitivity 0.72 0.7 0.42 0.43 0.72 

Specificity 0.64 0.64 0.67 0.88 0.64 
F1 score 0.83 0.80 0.55 0.61 0.83 

AUC 0.68 0.67 0.57 0.67 0.67 
 
However, in the GSE48556 dataset, models ex-
hibited lower predictive performance, with mod-
erate AUC score. Next, we explored how models 
would perform when trained on the GSE48556 
dataset (Table 2 and Fig. 3D-G). Compared to 
models trained on synovial tissue that consistent-

ly showed high performance, the PBMC-trained 
models had slightly more variability. However, 
the strong results obtained by several algorithms, 
such as LR (sensitivity, specificity, AUC and F1 
score of above 0.8 in all datasets), indicate their 
potential for future applications. 

 
 
 
 
 
 
 



Shehaj et al.: Identification of Potential Biomarkers … 
 

Available at:    http://ijph.tums.ac.ir   1747 

Table 2: Performance of machine learning algorithms trained on the GSE48556 dataset (peripheral blood mononu-
clear cells) 

 
Validation 
dataset 

Metric Logistic Re-
gression 

Support 
Vector Ma-

chines 

k-Nearest 
Neighbors 

Bagging (Lo-
gistic Regres-

sion) 

AdaBoost 

GSE1919 Sensitivity 0.8 1.0 0.0 0.8 0.8 
Specificity 0.8 0.2 1.0 0.8 0.8 
F1 score 0.8 0.71 0.0 0.8 0.8 

AUC 0.84 0.28 0.28 0.76 0.80 
GSE12021 Sensitivity 1.0 0.0 0.9 1.0 0.9 

Specificity 1.0 1.0 0.78 0.89 1.0 
F1 score 1.0 0.0 0.86 0.95 0.95 

AUC 1.0 0.10 0.76 0.98 0.99 
GSE55235 Sensitivity 0.8 0.0 0.7 0.9 0.8 

Specificity 1.0 1.0 0.8 0.9 1.0 
F1 score 0.89 0.0 0.74 0.9 0.89 

AUC 0.97 0.01 0.75 0.96 0.97 
GSE55457 Sensitivity 1.0 1.0 0.9 1.0 1.0 

Specificity 1.0 0.0 0.7 0.9 1.0 
F1 score 1.0 0.0 0.82 0.95 1.0 

AUC 1.0 0.13 0.74 0.98 1.0 
 

 
 

Fig. 3: Top panel: Receiver operating characteristic (ROC) curves of five models trained on the merged GSE55235&GSE55457 
dataset (synovial tissue). (A) GSE1919. (B) GSE12021. (C) GSE48556. Middle panel: ROC curves of five models trained on the 
GSE48556 dataset (synovial tissue). (D) GSE1919. (E) GSE12021. (F) GSE55235. (G) GSE55457. Bottom panel: (H) Feature 
permutation plot. (I) SHapley Additive exPlanations (SHAP) plot. (J) Local Interpretable Model-agnostic Explanations (LIME) 

plot 
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Model Interpretation 
Permutation feature importance was calculated 
for each gene, and genes were ranked based on 
their impact on the model performance. The im-
portance of genes was determined by the magni-
tude of their predictive impact. Hence, genes 
with higher significance values were more influ-
ential in predicting OA. SAT1 and LAMA5 had 
the highest feature importance score reaching 
above 0.018. (Fig. 3H).  
According to SHAP plot, SAT1 was the most 
influential gene (Fig. 3I). The SHAP values for all 
four genes showed a broad range of impacts on 
the model's output. Lower values of SAT1 (blue 
dots) were associated with higher SHAP values 
and thus higher impact on the model. Conversely, 
high values of SAT1 (red dots) contributed to the 
prediction of “control”, albeit to a smaller degree 
as evidenced by SHAP values clustered around -
0.2. Samples with lower values of SAT1 were 
more likely to be identified as having OA. RPA3 
and UCP2 also had a substantial effect on the 
model. High values of these genes were associat-
ed with positive SHAP values, which demon-
strates that their increased expressions were in-
dicative of OA. Compared to the other three 
genes, LAMA5 values were less spread out. Low-
er values of LAMA5 had positive SHAP values 
(prediction of OA). 
Based on the LIME plot, SAT1 and LAMA5 
negatively influenced the decision tree model's 
prediction of OA (Fig. 3J). In other words, higher 
values of SAT1 and LAMA5 contributed to the 
prediction of “no OA” (control). SAT1, in par-
ticular, had the highest impact (feature value – 

2.62), suggesting its critical role in the model's 
decision-making process. On the other hand, 
UCP2 and RPA3 most heavily influenced the OA 
prediction score. Although they also exhibited a 
rather strong influence on predicting OA, their 
impact was lower compared to SAT1 and LA-
MA5. 
 
Immune Infiltration Analysis 
Four cell types were excluded from the immune 
infiltration analysis as they were not expressed in 
a sufficient number of samples: native CD4+ T 
cells (expressed in one sample), activated memory 
CD4+ T cells (expressed in five samples), resting 
NK cells (expressed in one sample), and eosino-
phils (expressed in one sample). Expression lev-
els of memory B cells and resting mast cells were 
significantly higher in the OA group compared to 
the control group. In contrast, resting memory 
CD4+ memory T cells, monocytes, and activated 
mast cells were significantly more abundant in 
the control group (Fig. 4A). M2 macrophages 
were the predominant cell type in almost all sam-
ples followed by mast cells and CD8+ T cells 
(Fig. 4C). Activated mast cells were strongly posi-
tively correlated with resting memory CD4+ T 
cells and very strongly negatively correlated with 
resting mast cells, whereas resting mast cells in 
turn were strongly negatively correlated with rest-
ing memory CD4+ T cells (Fig. 4B). All genes 
were found to be significantly correlated with 
activated and resting mast cells. RPA3 exhibited 
the strongest strength of correlation followed by 
SAT1, UCP2, and LAMA5 (Fig. 4D-E).  
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Fig. 4: (A) Boxplots of immune cell types between osteoarthritis and control samples within the training data. (B) Correlation 

matrix between paired 18 immune cell types. (C) Ratio of the immune cell types, where each column represents a sample within 
the merged dataset. (D) Heatmap of the Spearman correlation of paired genes and immune cell types. (E) Correlation between 

RPA3, LAMA5, SAT1 and UCP2 with resting and activated mast cells (R – correlation coefficient, P – P-value). 
Note. *: P-value ≤ 0.05, **: P-value ≤ 0.01, ***: P-value ≤ 0.001, ****: P-value ≤ 0.0001. Names of all cell types with significant 

differences in expression levels between the two groups are highlighted in red 
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Discussion 
 
Numerous studies have performed bioinformat-
ics analyses of  OA using datasets from the Gene 
Expression Omnibus. Several research works 
even utilized some datasets used in our study(12-
15). However, there are some major differences. 
Firstly, while many similar studies either relied on 
a single dataset split into training and validation 
sets (13,15), or employed only a very limited 
number of  external validation sets (16), this study 
included thorough validation of  constructed pre-
dictive models across multiple independent da-
tasets. Secondly, datasets were derived from dif-
ferent tissue types, which is a novel approach that 
improves the generalizability of  the predictive 
models. Thirdly, while some studies applied ma-
chine learning solely for gene identification with-
out assessing predictive performance (12), this 
study comprehensively evaluated model perfor-
mance on different external validation sets using 
various metrics. Moreover, advanced machine 
learning methods and two feature selection 
methods were used to identify key candidate 
genes and construct predictive models. Finally, 
other than machine learning analysis, the paper 
explored correlations between gene expression 
and immune cells, providing more information 
on gene expression profiles of  OA.  
RPA3, LAMA5, SAT1, and UCP2 were identified 
as the most relevant for predictive modeling. The 
RPA3 gene encodes a subunit of the replication 
protein A complex, essential for DNA replication 
and repair. It stabilizes single-stranded DNA in-
termediates during these processes, playing a cru-
cial role in maintaining genomic stability and in-
tegrity (17). It is mainly associated with tumor-
igenesis (18,19) and rheumatoid arthritis-
associated interstitial lung disease (20). However, 
its association with OA is unclear and requires 
further investigation. LAMA5 (laminin subunit 
alpha 5) is crucial in the structure and function of 
the extracellular matrix. Due to the critical role of 
LAMA5, alterations in its expression levels have 
been implicated in various disorders, including 

OA (21,22). SAT1 (spermidine/spermine N1-
acetyltransferase 1) is downstream of P53, which 
as the name suggests, plays a crucial role in the 
conversion of spermidine and spermine back to 
putrescine (23). Inhibition of SAT1 could inhibit 
OA in murine models via suppressing chondro-
cyte ferroptosis and inflammation as well as the 
production of reactive oxygen species (24). UCP2 
(uncoupling protein 2) was reported to regulate 
insulin secretion in the pancreas and reactive ox-
ygen species production. Previous studies have 
demonstrated its widespread presence in the 
lymphoid system, macrophages, and osteoblasts 
(25). Moreover, single nucleotide polymorphisms 
of several genes were found to be associated with 
healthy aging (26), OA progression (27), etc. 
Prediction models trained on high-dimensional 
small sample-sized data are often associated with 
bias and poor generalizability (28). Thus, we de-
cided to merge two datasets, GSE55235 and 
GSE55457, to increase the sample size of the 
training dataset. The models were validated on 
three separate datasets, one of which included 
samples from PBMC. The findings of this study 
show good predictive performance of various 
models in predicting OA using gene expression 
data from RPA3, LAMA5, SAT1, and UCP2. 
Only UCP2 was found to be significantly differ-
entially expressed between the OA group and the 
control group in synovial tissues. Machine learn-
ing models were trained on a combination of 
four genes rather than each gene separately. 
Models can identify subtle patterns or interac-
tions between genes that collectively contribute 
to the prediction of OA(29). Thus, statistically 
significant differences in expression levels of each 
individual gene between the two groups are not 
as important in machine learning analysis com-
pared to conventionally used statistical tools. 
In the GSE48556 dataset, models exhibited good 
sensitivity but moderate specificity. Such signifi-
cant differences in the results compared to the 
other datasets could be caused by the inability of 
algorithms to generalize well to expression pat-
terns in PBMC, which are different from the mo-
lecular changes occurring in synovial tissues, 
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which are the primary site of inflammation and in 
OA (30). To investigate this further, we trained 
predictive models using the GSE48556 dataset 
and evaluated their performance on four datasets 
derived from synovial tissue samples. When 
trained on the GSE48556 datasets, several mod-
els such as LR and AdaBoost demonstrated good 
predictive performance in all external validation 
datasets as evidenced by high sensitivity, speci-
ficity, F1 score, and AUC. Thus, the most likely 
reason why models trained on GSE55235 and 
GSE55457 did not achieve high performance 
when validated on GSE48556, whereas models 
trained on GSE48556 performed well across all 
datasets, is the difference in sample size rather 
than significant biological differences between 
tissue types. A markedly larger sample size in 
GSE48556 provides a more representative train-
ing set that better captures the gene expression 
variability. The improvement in predictive per-
formance when training on blood-based samples 
and validating on synovial tissue datasets shows 
the broader applicability of RPA3, LAMA5, 
SAT1, and UCP2 as systemic biomarkers. 
Immune infiltration analysis revealed the com-
plex immune dynamics associated with OA. M2 
macrophages were the predominant cell type in 
almost all samples, followed by mast cells and 
CD8+ T cells. The expression levels of several 
immune cells, such as mast cells and memory T 
and B cells, were significantly different between 
the OA and control groups, which is consistent 
with findings made in earlier reports (31,32). 
Memory B cells and resting mast cells were sig-
nificantly higher in the OA group, suggesting 
chronic inflammation and immune dysregulation, 
whereas CD4+ memory T cells, monocytes, and 
activated mast cells were more abundant in con-
trols, which is indicative of a more regulated im-
mune response (33). Notably, the strongest level 
of correlation was observed between resting and 
activated mast cells. LAMA5, UCP2, SAT1 and 
RPA3 were found to be significantly correlated 
with activated and resting mast cells exhibiting 
mostly moderate levels of correlation.  
This study has several limitations. First, datasets 
come from different studies, which introduced 

heterogeneity due to biological and technological 
differences. Second, the sample sizes of  valida-
tion datasets were relatively small, potentially lim-
iting the statistical power of  the analysis. Alt-
hough multiple validation sets were used, larger 
datasets would enhance the generalizability of  the 
findings. Third, the study focused on tran-
scriptomic data without incorporating proteomics 
or metabolomics. A multi-omics approach could 
offer a deeper understanding of  molecular mech-
anisms associated with OA. Fourth, this is a pure-
ly bioinformatics analysis of  available datasets. 
Although machine learning analysis and immune 
infiltration analysis provided novel findings, the 
exact molecular mechanisms or relevance of  the 
identified gene-immune cell correlations remain 
unclear.  
To address these limitations, future studies 
should aim to integrate larger and more diverse 
datasets to improve the generalizability of  the 
findings. The inclusion of  multi-omics data, such 
as proteomics, metabolomics, and single-cell 
RNA sequencing, could provide a more compre-
hensive understanding of  OA pathophysiology. 
Moreover, prospective cohort studies are needed 
to validate the identified biomarkers and predic-
tive models in independent populations. Labora-
tory experiments can be conducted to understand 
the biological roles of  RPA3, LAMA5, SAT1, and 
UCP2 in OA pathogenesis. Finally, translating 
these findings into clinical applications requires 
the development of  non-invasive biomarkers. 
Since PBMC-based models exhibited variable 
performance, further optimization and validation 
are necessary to allow early OA detection or de-
velop therapeutic interventions. 
 
Conclusion 
 
Overall, our results demonstrate the potential of 
machine learning in OA research while highlight-
ing the necessity for continued exploration of 
additional biomarkers and improved model ro-
bustness across diverse datasets. Future work 
should focus on refining these models to enhance 
their applicability in clinical practice, addressing 
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the variability in performance and ensuring relia-
ble diagnostic outcomes.  
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