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Introduction 
 
A pervasive environmental contaminant, cadmi-
um poses significant risks to human health due to 

its widespread presence in industrial emissions, 
polluted air, and contaminated food and water 

Abstract 
We investigated the mechanisms of cadmium-induced cardiotoxicity, focusing on its pathophysiological effects, 
potential preventive strategies, and therapeutic interventions. We further explored approaches to mitigate long-
term cardiovascular risks associated with cadmium exposure. This research analyzed the molecular and cellular 
pathways involved in cadmium toxicity, emphasizing oxidative stress, inflammation, endothelial dysfunction, 
platelet-leukocyte interactions, and cardiomyocyte damage. Experimental findings and existing literature were 
examined to uncover the mechanisms driving cadmium-induced cardiotoxicity and to identify potential thera-
peutic targets. Cadmium exposure leads to oxidative stress and inflammation, resulting in endothelial dysfunc-
tion, platelet-leukocyte activation, and thromboinflammation. It disrupts calcium signaling, elevates reactive 
oxygen species (ROS) production, and causes cardiomyocyte loss, ultimately impairing cardiac function. Cad-
mium also remodels ion channels and suppresses cardiomyocyte proliferation, intensifying its cardiotoxic ef-
fects. While current therapies focus on removing circulating cadmium, they do not address the residual cardio-
vascular damage caused by prior exposure. Cadmium exerts significant cardiotoxic effects through oxidative 
stress, inflammation, and cellular activation. Future therapeutic strategies should target these pathways, particu-
larly the activation of platelets, leukocytes, and endothelial cells, to reduce cadmium-induced cardiovascular 
damage and improve long-term outcomes. 
 
Keywords: Cadmium; Cardiotoxicity; Heavy metal exposure; Pathogenesis; Thrombosis; Thromboinflamma-
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(1). Exposure to cadmium, whether through in-
halation, ingestion, or environmental contact, is 
associated with extensive damage across multiple 
organ systems, including the lungs, kidneys, 
skeletal structure, and cardiovascular system (1, 
2). Even at low levels, cadmium exerts profound 
disruptions on key physiological processes, par-
ticularly affecting the immune, reproductive, and 
cardiovascular systems (3). 
Emerging evidence highlights the critical role of 
cadmium in the onset and progression of cardio-
vascular diseases (4). Cadmium tends to accumu-
late in cardiac and vascular tissues, where it in-
duces structural damage, histopathological 
changes, and the development of cardiac fibrosis. 
These pathological alterations compromise the 
structural integrity and functional capacity of the 
cardiovascular system, making cadmium a signifi-
cant contributor to cardiotoxicity and associated 
health risks (5-7).  
In this study, we delve into the underlying mech-
anisms of cadmium-mediated cardiotoxicity, ex-
amining its molecular and cellular impacts on 
cardiovascular health. Furthermore, we explore 
both preventive strategies and therapeutic inter-
ventions aimed at mitigating cadmium-induced 
damage. By addressing the gaps in current under-
standing and highlighting potential targets for 
intervention, this research aimed to pave the way 
for innovative approaches to reduce the long-
term cardiovascular risks associated with cadmi-
um exposure. 
 
Application of cadmium in medicine  
Cadmium is generally utilized in the manufactur-
ing of nickel-cadmium batteries (8), coatings and 
platings for pigments, stabilizers for plastic man-
ufacturing, electroplating steel, and in nuclear 
reactors (5). Cadmium compounds were conven-
tionally employed in black and white television 
phosphors, photoconductive surfaces in photo-
copier drums, and paint pigments (9). These qual-
ities make it a suitable option for applications like 
fluorescent materials in medical devices such as 
fluorescent microscopes and fluorophore probes 
(10). Cadmium and its derivatives are also utilized 
in the manufacturing of radiation protection 

items. Recently, there has been a shift in atten-
tions towards utilizing cadmium for the devel-
opment of effective nano particles that are com-
monly employed in anti-cancer strategies (11, 12). 
Collectively, cadmium is a significant heavy metal 
that finds extensive use in both industrial and 
medical applications. However, prolonged expo-
sure to even small amounts of cadmium can lead 
to serious negative consequences like cardiotoxi-
city. 
 
Mechanism related cardiotoxicity 
A growing body of evidence suggests that cadmi-
um leads to notable harmful effects on the heart, 
such as alterations in cardiac tissue morphology, 
cardiac arrhythmia, remodeling of ion channels in 
cardiomyocytes, and cardiomyocytes apoptosis 
(13, 14). Additionally, some evidence also sug-
gested that cadmium accelerate the atherosclero-
sis through various mechanisms (15, 16). Cadmi-
um has the ability to promote the conversion of 
macrophages into M1 macrophages, resulting in 
the production of IL6 and TNF-α (Fig. 1) (17, 
18). This, in turn, worsens the inflammatory 
state, which not only aids in the advancement of 
atherosclerosis but also promotes the develop-
ment of various harmful occurrences like cardi-
omyocyte apoptosis, endothelial dysfunction, 
platelet activation, and thrombus formation, re-
sulting in tissue ischemia such as heart ischemia 
(19). Cadmium induces NLRP3 inflammasome 
activation, resulting in the production of IL1b 
and IL-18 as well as the activation of caspase 1 
(Fig. 1) (20). These deleterious events contribute 
to increased inflammation. Moreover, caspase 1 
activation causes pyroptosis in vascular endothe-
lial cells (21). Altogether, the activation of 
NLRP3 in vascular endothelial cells plays a cru-
cial role in the progression of cardiovascular dis-
ease (22). The important part of deleterious cad-
mium mediated cardiotoxicity regulated by the 
activation or suppression of crucial signaling 
pathways like phosphatidylinositol 3-kinase 
(PI3K)/AKT and P38 MAPK pathways in cardi-
omyocytes (13, 14, 23). The atypical electrophysi-
ological characteristics caused by cadmium can be 
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reversed by blocking either the PI3K‐Akt or P38 
MAPK signaling pathway (24). Further investiga-
tion revealed that CdCl2 treatment of H9-CMs 
resulted in a unique expression pattern of ion 
channel genes, along with decreased sodium and 
calcium currents. The cells underwent remodel-
ing of cardiac ion channels in response to cadmi-
um exposure (14). Furthermore, cadmium has the 
ability to directly trigger the activation of matrix 
metalloproteinases (MMPs) and indirectly induce 
MMPs activation by amplifying inflammation 
(25). This activation of MMPs is crucial in vari-

ous extracellular matrix processes, including in-
flammation and fibrosis (26, 27). A study demon-
strated that cadmium triggers cardiac fibrosis by 
activating MMP-2 and MMP-9 (25). Cadmium 
also induces vascular endothelial and cardiomyo-
cyte injury by promoting the generation of reac-
tive oxygen species (ROS) (28). In summary, ex-
posure to cadmium is associated with the occur-
rence several deleterious cascades of events that 
contribute to the progression of cardiovascular 
damage. 

 

 
Fig. 1: Cadmium-induced inflammation: Cadmium triggers inflammatory responses via three distinct mecha-

nisms. Firstly, it prompts the conversion of macrophages into M1 macrophages that release pro-inflammatory cyto-
kines like TNF-α and IL1, 6. Secondly, it activates NLRP 3, leading to the formation of an inflammasome that am-
plifies inflammation. Lastly, it triggers the activation of the p38-MAPK pathway, further exacerbating inflammation 

 
Oxidative stress 
The activation of various cellular signaling path-
ways is typically linked to the oxidative stress re-
sulting from the disparity between the production 
and neutralization of ROS (29). Elevation level of 

ROS can arise from either endogenous or exoge-
nous sources (30). Typically, the accumulation of 
ROS is identified by an increase in various mole-
cules such as hydrogen peroxide, hydroxyl ions, 
singlet oxygen, superoxide anions, lipid hydrop-
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eroxides, and phospholipid hydroperoxides (31). 
The ROS accumulation often leads to the initia-
tion of double strand DNA breaks and damage 
to membranes, proteins, and lipids (32). Several 
lines of evidence suggest that ROS generation is 
linked to the inhibition of the electron transfer 
chain in mitochondria (33). This, in turn, induces 
exaggerated ROS production, leading to the acti-
vation of the apoptotic process. Ultimately, this 
process initiates apoptosis, especially in cardio-
myocytes that possess a significant number of 
mitochondria (34). ROS generation is often ac-
companied by activation of important transcrip-
tion factors comprising NF-κβ, AP-1, and Nrf-2 
(35). These crucial transcription factors govern 
the process of cardiac remodeling, distinguished 
by alterations in the cardiomyocytes, fibroblasts, 
vascular smooth muscle cells, vascular endothelial 
cells, and inflammatory cells, as well as modifica-
tions in the size, shape, geometry, and functional-
ity of the heart (36). Additionally, ROS genera-
tion typically associated with disruption of cellu-
lar Calcium ions (Ca2+) homeostasis which 
serves as a crucial second messenger (37). Cad-
mium-induced oxidative stress collectively en-
dangers patients by increasing the risk of cardio-
toxicity. 
 
Dysregulation of calcium homeostasis 
Ca2+ play a crucial role in regulating a wide 
range of cellular functions in different types of 
cells, such as cardiomyocytes (38). Ca2+ plays a 
crucial role in regulating cardiac electrical signals 
and the contraction of cardiomyocytes in order 
to enhance blood circulation (39). Additionally, 
Ca2+ is involved in governing diverse activities 
within cardiomyocytes, such as gene transcription 
(40). A limited number of crucial molecular com-
ponents, namely ryanodine receptors, voltage-
operated calcium channels, and calcium 
pumps/transporters regulate cardiac calcium 

homeostasis (41). Any alteration in the elements 
participating in the regulation of cardiac calcium 
balance, whether caused by genetic mutation, ill-
ness, or long-term changes in blood flow, can 
have a substantial effect on both the functionality 
and characteristics of cardiomyocytes (42, 43). In 
this context, a piece of evidence indicated that 
cadmium can disrupt cellular Ca2+ homeostasis 
is through stimulation of intracellular Ca2+ stor-
age release and/or extracellular Ca2+ entrance 
(44). Mechanistically, Cadmium has the ability to 
hinder the plasma membrane Ca2+-ATPase, 
leading to the obstruction of Ca2+ efflux (45). 
Additionally, it can also impede the entry of cal-
cium into the endoplasmic reticulum and Golgi 
apparatus by inhibiting the activities of sarco-
plasmic/endoplasmic reticulum Ca2+-ATPase or 
secretory pathway Ca2+-ATPase (46). Another 
significant mechanism through which cadmium 
induces calcium flux is by interacting with G-
protein coupled receptors, which triggers the ac-
tivation of Phospholipase C (PLC) (47, 48). This 
activation leads to the breakdown of phospha-
tidyl inositol into inositol triphosphate (IP3) and 
diacylglycerol (DAG). The generated IP3 subse-
quently binds to IP3R on the endoplasmic reticu-
lum, resulting in calcium influx (49). The cadmi-
um-mediated Ca2+ flux not only disrupts normal 
cardiomyocyte functions, potentially leading to 
cardiac arrhythmia, but also triggers an exaggerat-
ed level of Ca2+ that activates the apoptosis 
pathway (50). Elevated Ca2+ levels activate cal-
modulin, which in turn induces cardiomyocyte 
apoptosis through the mTOR and MAPK path-
ways (Fig. 2) (51). Additionally, calmodulin in-
duces mitochondrial collapse, facilitating the re-
lease of cytochrome c and activation of intracel-
lular apoptosis pathways (52). Therefore, the 
overload of calcium mediated by cadmium plays 
a critical role in cardiotoxicity.  
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Fig. 2: Cadmium mediated-cardiotoxicity: Cadmium causes cardiotoxicity primarily by activating mTOR and 
MAPK, as well as inducing ca2+ efflux. Cadmium stimulates ca2+ influx by interacting with a G-protein-coupled 
receptor, leading to the activation of phospholipase C. This enzyme then generates IP3 from PIP2, which subse-

quently binds to its specific receptor on the endoplasmic reticulum, resulting in ca2+ influx 
 
Cardiomyocyte regeneration 
Following postnatal physiological changes in the 
human body, cardiomyocytes experience signifi-
cant alterations, such as a reduction in their abil-
ity to regenerate and an enhancement in their 
functionality (53, 54). However, the regenerative 
capability of cardiomyocytes can be enhanced by 
various factors, such as ischemia, certain hor-
mones like platelet-derived growth factor, and 
vasoactive peptides (55). Moreover, the trans-
formation of other cell types, such as fibroblasts, 
into functional cardiomyocytes and the differen-
tiation of stem cells into cardiomyocytes, serve as 
additional mechanisms for cardiomyocyte regen-
eration (56, 57). Several molecular mechanisms 
are involved in the proliferation of cardiomyo-
cytes. One of these mechanisms is the 
PI3K/AKT signaling pathway, which plays a 

crucial role in enhancing the proliferation and 
survival of cardiomyocytes (58). There is evi-
dence suggesting that cadmium inhibits the acti-
vation of this signaling pathway (13). This inhibi-
tion not only reduces the reproductive capability 
of cardiomyocytes but also affects their energy 
homeostasis, leading to a decrease in functionality 
and cardiac contractile tension. Conversely, 
PI3K/AKT is an important pathway in which 
suppression of this pathway inhibit the cadmium 
mediated cardiotoxicity (14). Therefore, cadmium 
can potentially interfere with cardiomyocyte re-
generation.  
 
Strategy to cardiotoxicity inhibition 
Exposure to cadmium has been linked to various 
harmful effects. Numerous studies have been 
conducted to explore potential methods of inhib-
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iting cadmium-induced toxicity, particularly in 
relation to cardiotoxicity. These methods include 
preventive measures such as the use of chemical 
and natural decontamination agents (59), nano-
particles (60), as well as treatment options follow-
ing cadmium exposure, such as the use of chelat-
ing agents (Table 1) (61) and plasma exchange-
hemodialysis-plasmapheresis (3). Contaminated 
water poses a significant risk for cadmium expo-
sure, leading to the utilization of various decon-
taminating agents to minimize this risk. Some of 
these agents are Moringa oleifera seeds, peanuts 
(Arachis hypogaea), cowpeas (Vigna unguiculata), 
urad (Vigna mungo), and corn (Zea mays). These 
seeds work by filtering contaminated water 
through different mechanisms, including neutral-
izing colloidal positive charge and absorbing 
heavy metals in their tissues (3). Detoxifiers can 
also be used to remove soil contamination. Upon 
exposure to cadmium, the initial approach to 
treating poisoned patients with heavy metal in-
volves the sequential removal of circulating cad-
mium and the subsequent neutralization of its 
harmful impact on various organs, particularly 
the cardiovascular system. Hemodialysis and che-
lating agents, such as Ethylenediaminetetraacetic 
acid (EDTA), are viable options for eliminating 
cadmium from the bloodstream (3). The subse-
quent step entails counteracting the adverse ef-
fects of cadmium. Given that oxidative stress 
plays a central role in cadmium-induced cardio-
toxicity, the utilization of antioxidant agents such 
as vitamin C and vitamin D serves as an appro-
priate strategy for mitigating this toxicity (62). 
Roflumilast can effectively reduce cadmium-
induced cardiotoxicity by inhibiting oxidative 
stress in a rat mode (63)l. Hence, it proves to be a 
successful approach to initially eliminate cadmi-
um from the bloodstream and the human system, 
subsequently counteracting its detrimental conse-

quences like oxidative stress through the utiliza-
tion of antioxidants.  
 
Conclusion and future perspective 
Cadmium is a hazardous heavy metal present in 
contaminated air, soil, and potentially in vegeta-
bles (64). Even minimal exposure to cadmium 
can cause serious damage to various organs (65, 
66). The primary mechanisms responsible for 
cadmium toxicity are primarily linked to oxidative 
stress and the Ca2+ ions efflux (67). These con-
ditions give rise to toxic effects such as severe 
damage to cardiomyocytes and an increased like-
lihood of thrombosis, thereby increasing the risk 
of cardiovascular disease (66). Furthermore, an 
increasing amount of evidence suggests that 
cadmium also induces inflammation, further 
worsening its toxic effects on the cardiovascular 
system (18). 
Numerous investigations have been conducted to 
explore potential techniques for mitigating the 
harmful effects caused by cadmium. The appro-
priate course of action following cadmium expo-
sure consists of two main components. Firstly, 
the primary concern is to eliminate cadmium 
from the patient's body (68). Two approved 
methods for achieving this objective are chelation 
therapy utilizing agents and hemodialysis (3). 
Subsequently, the focus shifts towards alleviating 
the adverse impacts of cadmium on the individu-
al's body. Although some studies propose the 
utilization of antioxidants to counteract cadmium 
toxicity, there is limited evidence supporting the 
use of anti-inflammatory medications or a com-
bination of antioxidants and anti-inflammatory 
agents to reduce cadmium-induced cardiotoxicity 
(3, 69). Considering that inflammation and the 
production of ROS play crucial roles in cadmi-
um-mediated toxicity, it is suggested that a more 
effective approach would involve targeting both 
inflammation and oxidative stress. 
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Table 1: Heavy metal chelating agents 
Chelating Agents Mechanisms Type Side Effects Ref 
EDTA Bind to heavy met-

als via four car-
boxylate and two 

amine groups 

hydrophile low blood sugar, 
diminished calcium 

levels, headache, 
nausea, dangerous-
ly low blood pres-

sure, kidney failure, 
organ damage, ir-
regular heartbeat, 

and seizures 

(70, 71) 

Penicillamine 
(DPA) 

Binding to divalent 
and three valent 

ions 

hydrophile Abdominal or 
stomach pain, 
chest pain, and 

dark urine 

(72, 73) 

Dimercaprol Bind through thiol 
group to cadmium 
and other heavy 

metal 

hydrophile nausea, vomiting, 
abdominal pain, 

tachycardia, hyper-
tension, headache, 
burning sensation 
in the eyes, nose, 

and mouth 

(74) 

Dithiocarbamates Bind to heavy met-
al through by its 

thiol group 

hydrophobic flushing, nausea 
and tachycardia. 

(75) 

Meso 2, 3-
dimercaptosuccinic 
acid (Succimer, 
DMSA) 

Chelating heavy 
metal by its sulfur 
and capping agents 

feature. 

hydrophile Nausea, vomiting, 
diarrhea, and ano-
rexia are common. 

(76) 

 dimercapto-1-
propane sulfonic 
acid (Unithiol, 
DMPS) 

Chelating heavy 
metal by their sul-

fur group, 

hydrophile nausea, vertigo, 
headache, weak-

ness, pruritus, and 
allergic reactions, 

such as rashes 

(77) 

monoisoamyl DMSA 
(MiADMSA) 

Bind to heavy met-
al through its thiol 

groups 

hydrophobic mild gastrointesti-
nal discomfort, 
fatigue, mental 
fuzziness, head-

ache, and diuresis. 

(78) 

Monocyclohexyl 
DMSA 
(MchDMSA) 

Bind to heavy met-
al through its thiol 

groups 

hydrophobic - (79) 

 
Conclusion 
 
Cadmium exerts significant cardiotoxic effects 
through oxidative stress, inflammation, and cellu-
lar activation. Future therapeutic strategies should 
target these pathways, particularly the activation 
of platelets, leukocytes, and endothelial cells, to 

reduce cadmium-induced cardiovascular damage 
and improve long-term outcomes. 
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