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Abstract 

Purpose: Breast cancer is one of the most prevalent diseases among women worldwide. One of the effective ways 

to reduce the risk of death from breast cancer is early detection by breast screening methods such as thermography. 

Thermography is non-invasive infrared imaging that detects early symptoms of breast angiogenesis based on the 

temperature difference and asymmetric patterns between left and right breasts. For better visual perception, it is 

essential to increase the medical image quality and contrast. 

Materials and Methods: Histogram Equalization (HE) is a common and effective technique for contrast enhancement 

that uses the whole dynamic range of gray levels. In this paper, we propose to apply the equalization technique 

to the object part of the image rather than the background. One way is to use Otsu's method for automatic image 

thresholding. A more efficient approach to extract the body region is to fit a bimodal Gaussian distribution on the 

temperature information and restrict the equalization on gray level ranges corresponding to temperatures between 

the mean minus/plus three times of standard deviation. 

Results: We compared the performance of the proposed approach with six conventional HE methods by using objective 

criteria, including Absolute Mean Brightness Error (AMBE), Peak Signal-to-Noise Ratio (PSNR), Structural Similarity 

Index (SSI), and Entropy.  

Conclusion: Based on objective measures, as well as subjective visual inspection of the results, the proposed Gaussian 

model-based HE has better performance in contrast enhancement and brightness preservation among other methods. 

Keywords: Breast Thermography; Histogram Equalization; Gaussian Model; Contrast Enhancement; Objective 

Criteria. 
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1. Introduction  

Breast cancer is the most prevalent cancer among 

women which is ranked the second leading reason of 

cancer deaths [1]. Although the possibility of breast 

cancer is affected by age and genetic [2], it should be noted 

that breast screening and early detection are important 

factors in increasing awareness and consequently decreasing 

mortality [3]. Therefore, various methods are used for 

diagnosing breast cancer such as clinical breast exams, 

X-ray mammography, ultrasound, and Magnetic Resonance 

Imaging (MRI) screening. One of the medical imaging 

techniques that is used for breast abnormality detection 

is thermography. Since there is a high temperature and blood 

activity in tumor cells [4], this method differentiates the 

normal and tumorous regions by measuring the surface 

temperature based on infrared radiation [5]. Thermography 

is considered an efficient, non-invasive, and painless 

method in comparison to any other modality, which is 

able to detect prior symptoms much earlier. Also, there 

is not a limitation in breast density and age of the patient 

in this modality [6]. Early detection of abnormalities by 

specialists requires that the thermography images should 

have a high quality and contrast.  

Histogram Equalization (HE) is a technique that provides 

better visual perception by contrast enhancement through 

uniform redistributing gray levels in the whole dynamic 

range of the image [7]. This technique has various versions 

including Global Histogram Equalization (GHE), Brightness 

preserving Bi-Histogram Equalization (BBHE), equal-

area Dualistic Sub-Image Histogram Equalization (DSIHE), 

Local Histogram Equalization (LHE), Contrast Limited 

Adaptive Histogram Equalization (CLAHE), and Adaptive 

Gamma Correction with Weighted Distribution (AGCWD). 

These methods are thoroughly explained in the method 

section.  

Medical images are used vastly in diagnosing different 

diseases and tumors; therefore, they must have high quality 

and contrast with as slight noise as possible. Studies have 

shown that HE is one of the common techniques to enhance 

the contrast and brightness of different medical images. 

As an example, CLAHE has been applied to MRI breast 

images prior to extraction of the tumorous region [8]. Also, 

Adaptive Histogram Equalization (AHE) has been 

used as a preprocessing step to increase the contrast of 

mammography images [9] as well as ultrasound breast 

images [10]. Therefore, different methods of HE are used 

to improve the contrast of medical images such as breast 

images, increase their quality, and consequently, help the 

specialist to make certain decisions more clearly.  

In this paper, we aim to propose a HE technique that 

considers the content of the medical images and is suitable 

for contrast enhancement of breast thermography images. 

This technique is based on fitting a bimodal Gaussian 

model to the image histogram. Gaussian mixture models 

have been shown a good method for automatic segmentation 

of these images, too [11]. Besides subjective and visual 

inspection of the results, we compare the proposed method 

with existing ones by objective criteria, including Absolute 

Mean Brightness Error (AMBE), Peak Signal-to-Noise 

Ratio (PSNR), Structure Similarity Index (SSI), and entropy. 

The complete description of the dataset is provided in 

the next section. 

2. Materials and Methods  

2.1. Dataset 

The dataset consisted of 50 breast thermography images 

which were taken by Thermoteknix VisIR 640 camera in 

“Imam Hospital”, Tehran, Iran [11]. The thermal sensitivity 

of the camera was 50 mK. The camera contained an 

uncooled focal plane array detector of resolution 640 × 480 

with detector pitch equal to 25 μm. The spectral sensitivity 

of the detector was in the range of 7.5 to 13 μm. According 

to Plank’s equation and Wein’s Law, it is found that 

approximately 90% of the emitted infrared radiation is 

in the range of 6 to 14 μm [12]; therefore the sensitivity 

of the used camera was acceptable. The field of view was 

26° × 20° and the camera was placed 1 m away from the 

patient’s chest. The temperature of the examination 

room was in the range of 20-22°C (within ±0.1°C). Since 

stabilization and reduction of the basal metabolic rate is 

essential to minimize surface temperature changes [13], 

patients were asked to rest for at least 15 minutes. For each 

person, there is an excel file containing the temperature 

information as well as a gray-level image. Visual inspection 

of the two types of data shows a linear transformation. 

Figure 1 shows a sample of images, its histogram, temperature 

histogram, and the scatterplot of gray levels with respect 

to temperature values. 

2.2. Histogram Equalization (HE) 

Histogram is one of the important features of an image 

that describes the frequency of occurrence of the gray 
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levels in the image. By looking at an image histogram, the 

entire distribution of intensity, in addition to dynamic range, 

can be obtained [14].  

Assume that 𝑋 = {𝑋(𝑖, 𝑗)} is an image in which 

𝑋(𝑖, 𝑗) represents the intensity at spatial location (𝑖, 𝑗). 

For an image 𝑋 with 𝐿 discrete gray levels denoted by 

{𝑋0, 𝑋1, … , 𝑋𝐿−1}, the histogram ℎ is defined as (Equation 1): 

ℎ(𝑋𝑘) = 𝑛𝑘,  For  𝑘 = 0, 1, … , 𝐿 − 1 (1) 

Where 𝑋𝑘 is the 𝑘-th gray level and 𝑛𝑘 is the number 

of pixels with the same intensity level 𝑘. 

The histogram also can be defined by the Probability 

Density Function (PDF), and it can be obtained by 

normalizing the histogram [15]. For an image 𝑋, the 

PDF for intensity 𝑋𝑘 is defined by (Equation 2): 

𝑝(𝑋𝑘) =
𝑛𝑘

𝑁
,  For  𝑘 = 0, 1, … , 𝐿 − 1 (2) 

Where 𝑁 is the total number of pixels in the image, 

and 𝑛𝑘 is the number of pixels with the same intensity 

level 𝑘. Graphical representation of PDF is the histogram 

of the image. 

HE, also known as GHE, is a well-known method that 

enhances the image contrast by redistributing the intensity 

over the full range of gray levels in a uniform way [16]. 

By calculating the sum of all components of PDF, 

Cumulative Density Function (CDF) is obtained which 

is given by the following Equation 3: 

𝐶(𝑋𝑘) = ∑ 𝑝(𝑋𝑖)
𝑘
𝑖=0  , For  𝑘 = 0, 1, … , 𝐿 − 1 (3) 

Where 𝐶(𝑋𝑘) is CDF, 𝐶(𝑋𝑘) = 1. HE uses CDF as 

its transformation function, 𝑇(𝑥), which is defined as 

(Equation 4): 

𝑇(𝑋𝑘) = (𝐿 − 1). 𝐶(𝑋𝑘)  For  𝑘 = 0, 1, … , 𝐿 − 1 (4) 

Although HE increases the overall contrast of the 

image, it has also some limitations. It has a well-known 

problem, “mean-shift”, which causes a shift in the mean 

intensity and consequently, a difference between the mean 

brightness of input and output images. Therefore, it is not 

a suitable technique where the brightness preservation 

of the image is essential. By this method, the noise in the 

image is also enhanced which causes artifacts and unnatural 

enhancement. Thus, although HE is an effective technique 

in increasing the contrast and brightness of the image, it 

might decrease the quality of the image [15]. 

2.3. Brightness Preserving Bi Histogram Equalization 

(BBHE) 

To overcome the mentioned mean-shift problem, 

Brightness preserving Bi Histogram Equalization 

(BBHE) was proposed [17]. In this method, in addition 

to contrast enhancement, the mean brightness of the image 

is preserved. The BBHE decomposes the input image into 

two sub-images with different intensity ranges, one from 

minimum gray level to mean value and the other one from 

a 

 

b 

 

c 

 

d 

 

Figure 1. A sample of the available images (a), histogram of pixels’ temperature (b), histogram of pixels’ 

gray-level value (c), and the linear relationship between gray-level values and temperature (d) 
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mean value to maximum gray level. Then, it equalizes 

the histogram of each sub-image independently. 

2.4. Equal Area Dualistic Sub-Image Histogram 

Equalization (DSIHE) 

Equal area DSIHE has the same idea as the BBHE 

method and decomposes the input image into two sub-

images; but decomposition is based on median value, 

instead of mean value as in BBHE [16]. The goal of this 

method is to maximize Shannon’s entropy of the output 

image. After decomposing the input image based on gray 

levels with CDF value equal to 0.5, which leads to two 

dark and bright sub-images, the HE is applied on each 

sub-image. Composing equalized sub-images into one 

image results in DSIHE output image [14]. 

2.5. Local Histogram Equalization (LHE) 

As it was mentioned in section 2.2, HE enhances the 

input image globally without considering its details. Since 

HE uses one CDF as a transformation function for all of 

the pixels, the local content of the image remains without 

enhancement [15]. By LHE, also known as AHE, this 

limitation is overcome. 

In the LHE method, a window, W, of dimension M  ×  M 

is defined and only the pixels of this window are used for 

the calculation of CDF.  In this way, a local transformation 

function is defined for each pixel based on the neighborhood 

pixels. In other words, the histogram of the window is 

equalized and the transformation of the central pixel is 

calculated [18]. PDF of the window W is defined as 

(Equation 5): 

𝑝𝑊(𝑋𝑘) =
𝑛𝑘

𝑀2,  For  𝑘 = 0, 1, … , 𝐿 − 1 (5) 

Where 𝑛𝑘 is the number of pixels in the window with 

gray level 𝑘.  

CDF of 𝑊 is given as (Equation 6): 

𝐶𝑊(𝑋𝑘) =
1

2
𝑝𝑊(𝑋𝑘) + ∑ 𝑝𝑊(𝑋𝑖)

𝑘−1
𝑖=0 , 

For   𝑘 = 0, 1, … , 𝐿 − 1 
(6) 

The HE transformation over 𝑊 is defined as 

(Equation 7): 

𝑇(𝑋𝑘) = (𝐿 − 1)𝐶𝑊(𝑋𝑘), 

For   𝑘 = 0, 1, … , 𝐿 − 1 
(7) 

2.6. Contrast Limited Adaptive Histogram 

Equalization (CLAHE) 

To solve the problem of noise amplification by LHE, 

CLAHE was proposed [2]. In this method, the input image 

is decomposed into numerous non-overlapping regions 

with equal sizes. This division results in three different 

region groups: Corner Regions (CR), Border Regions 

(BR), and Inner Regions (IR) [19]. First, the histogram 

of each region is calculated. Then, to clip histograms 

based on the desired limit for contrast expansion, a limit 

is obtained and each histogram is redistributed considering 

the clip limit. In the end, CDFs of the resultant histograms 

are determined as transformation functions.  

To limit the contrast to a desired level, the maximum 

slope of the histogram should be limited to a desirable value. 

To do so, the clip limit, β, is used which is given by the 

following Equation 8: 

𝛽 =
𝑀

𝐿𝑅
(1 +

𝛼

100
(𝑠𝑚𝑎𝑥 − 1)) (8) 

Where 𝑀 is the total number of pixels in one specific 

region and 𝐿𝑅 is the total number of grayscales in that region. 

𝛼 is the clip factor and 𝑠𝑚𝑎𝑥 is the maximum allowable 

slope. Note that by increasing 𝛼 from zero to hundred, the 

maximum slope is increasing between one to 𝑠𝑚𝑎𝑥 [19].  

2.7. Adaptive Gamma Correction with Weighted 

Distribution (AGCWD) 

Gamma correction is one of the HE techniques which 

uses a varying adaptive parameter γ. The Transform-based 

Gamma Correction (TGC) for gray level Xk is defined 

as (Equation 9): 

𝑇(𝑋𝑘) = 𝑋𝑚𝑎𝑥(𝑋𝑘 𝑋𝑚𝑎𝑥)⁄ 𝛾
 (9) 

Where 𝑋𝑚𝑎𝑥 is the maximum intensity of the input 

image. Note that when 𝛾 = 1, the transformation curve 

of gamma correction is defined as identity curve and the 

gamma curves generated with 𝛾 < 1 have the opposite 

effect as gamma curves with 𝛾 > 1 [20]. 

Although the previous methods of HE enhance contrast 

and preserve brightness level of the input image, the 

resultant image is sometimes faced with over enhancement 

problem. Therefore, a new method was proposed as 

AGCWD. This method combines TGC and HE methods 
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and uses gamma to increase the brightness level of the low 

contrast image [7].  

The AGCWD method utilizes CDF as an adaptive 

parameter to modify the transformation curve and maintains 

the statistical information of the histogram that might be 

lost by using other methods [20]. The proposed Adaptive 

Gamma Correction (AGC) is defined as (Equation 10): 

𝑇(𝑋𝑘) = 𝑋𝑚𝑎𝑥(𝑋𝑘 𝑋𝑘)⁄ 𝛾
= 𝑋𝑚𝑎𝑥(𝑋𝑘 𝑋𝑚𝑎𝑥)⁄ 1−𝐶(𝑋𝑘)

 (10) 

In which 𝐶(𝑋𝑘) denotes the CDF at gray level 𝑋𝑘. The 

weighting process is applied by the normalized power 

low function in order to modify the histogram of the 

image according to gray levels frequency and avoid over 

enhancement [21]. The Weighting Distribution (WD) 

function is given in the following Equation 11: 

𝑝𝑤(𝑋𝑘) =  𝑝𝑚𝑎𝑥 (
𝑝(𝑋𝑘) − 𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛

)

𝛼

 (11) 

Where 𝛼 is the adjusting parameter, 𝑝𝑚𝑖𝑛 and 𝑝𝑚𝑎𝑥 

are the minimum and maximum values of histogram PDF, 

respectively. 

The modified CDF is defined as (Equation 12): 

𝐶𝑤(𝑋𝑘) = ∑ 𝑝𝑤(𝑋𝑖)/Σ𝑝𝑤

𝑘

𝑖=0

 (12) 

In which the sum of 𝑝𝑤 is calculated as (Equation 13): 

Σ𝑝𝑤 = ∑ 𝑝𝑤(𝑋𝑖)

𝑘𝑚𝑎𝑥

𝑖=0

 (13) 

In the end, the gamma parameter is modified as (Equation 

14): 

𝛾 = 1 − 𝐶𝑤(𝑖) (14) 

2.8. Gaussian Model-Based Histogram Equalization 

(GMHE) 

One of the main problems of HE techniques discussed 

in previous sections (HE, BBHE, and DSIHE) is that 

they transform the background intensities toward brighter 

ones. This causes the image contrast to diminish. Another 

problem is that the mean or median of an infrared image 

seems not to be an appropriate indicator for decomposing 

the image and applying the equalization independently on 

both parts. Therefore, we propose to restrict the equalization 

just on the body region of the image. To do so, first, we 

need to eliminate the background from the image and then 

apply the equalization transform only on the body region. 

According to the image histogram shown in Figure 1, 

one way to extract the body from the background is to 

use a threshold e.g., Otsu’s method, and then apply the 

equalization between the threshold value and the maximum 

gray level. Here, we call this method threshold-based 

histogram equalization (TH/HE). As will be discussed in 

the result section, this approach can outperform BBHE 

and DSIHE based on some objective criteria but it still 

needs to get enhanced.  

Another way to extract the body from the background 

can be achieved by considering the temperature information 

since background temperature is relatively low in 

comparison to body temperature. Gaussian distribution 

is one of the common distributions for modeling unimodal 

data [22]. Gaussian mixture model with K components 

is defined as (Equation 15, 16): 

𝑝(𝑥) = ∑ 𝜙𝑖𝑁(𝑥|𝜇𝑖 , 𝜎𝑖)

𝐾

𝑖=1

 

𝑁(𝑥|𝜇𝑖 , 𝜎𝑖) =
1

𝜎𝑖√2𝜋
exp (−

(𝑥 − 𝜇𝑖)2

2𝜎𝑖
2

) 

(15) 

 

(16) 

Where N denotes the Gaussian distribution, 𝜙𝑘 is the 

mixture component weights, and 𝜇𝑘 and 𝜎𝑘 are the mean 

and variance of the 𝑘𝑡ℎ component, respectively. As 

Figure 1 depicts, the temperature histogram is unimodal 

data with two peaks. Thus, it is possible to fit a bimodal 

Gaussian density function to the temperature histogram. 

This procedure is shown in Figure 2. Due to the higher 

temperature of the body, the second Gaussian model 

is utilized. We assumed that the temperature range of 

the object (body) is between m ±3σ, where m is the 

mean and σ is the standard deviation of the second 

Gaussian model. As the scatter plot in Figure 1 shows, 

there is a linear relationship between temperature values 

and image gray levels. Therefore, we map the desired 

 

Figure 2. A bimodal Gaussian distribution fit on the 

temperature histogram 
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temperature range to the gray levels using the linear 

transformation parameters. In this way, the object and the 

background section in the image are separated which 

is shown in Figure 3.  

Finally, we applied the HE to only the object section, 

which in this case is the body region. Here, we call this 

method the Gaussian model- based histogram equalization 

(GM/HE), and block diagram of the proposed method 

is shown in Figure 4.  

3. Results  

In this section, the performance of mentioned techniques 

is compared. Figure 5 shows a sample of the original image, 

its histogram, enhanced images by eight histogram 

equalizing methods, and the corresponding histograms. 

All of the methods were implemented on MATLAB 

version R2020b. For quantitative evaluation, four objective 

measures were used: AMBE, PSNR, SSI, and Entropy. In 

continue, these metrics are explained and obtained for 

all the methods as well as for every 50 images of the 

dataset. 

3.1. Quantitative Evaluation based on the Absolute 

Mean Brightness Error 

AMBE is used to measure brightness preservation in 

the processed images. AMBE for two images of X and the 

enhanced image (Y) is defined as (Equation 17): 

𝐴𝑀𝐵𝐸(𝑋, 𝑌) = |𝜇𝑋 − 𝜇𝑌| (17) 

Where 𝜇𝑋 and 𝜇𝑌 are the mean of the input and the 

enhanced image, respectively. 

A lower value of AMBE indicates better performance 

of the equalizing method in terms of preserving brightness 

and consequently, a better quality of the resultant image. 

Figure 6 shows the mean and the standard deviation of 

AMBE for all the 50 images and their enhanced versions 

obtained by the eight equalizing methods.  

3.2. Quantitative Evaluation based on the Peak 

Signal-to-Noise Ratio  

Assume that 𝑋(𝑖, 𝑗) is the input image with 𝑀 × 𝑁 

pixels and 𝑌(𝑖, 𝑗) is the enhanced image.  

 
Figure 3. Left: Original image, right: Body region segmentation from the background by GM 

 

Figure 4. The block diagram of GM/HE method 

 

Read body 

temperature data and 

thermography images 

Fit a bimodal 

Gaussian density function 

to temperature histogram 

Select 

temperature range 

between m ±3σ 

from the second 

Gaussian model 

Map the desired temperature 

range to the gray levels using the 

linear transformation parameters 

Apply the histogram 

equalization to the resultant 

object section 

Fit a linear 

transformation to 

temperature and gray level 

data 



Breast Thermography Image Enhancement 

FBT, Vol. 9, No. 3 (Summer 2022) 214-223 220 

PSNR is calculated by (Equation 18): 

𝑃𝑆𝑁𝑅 = 10 log10

(𝐿 − 1)2

𝑀𝑆𝐸
 (18) 

Where L is the maximum gray level and MSE is the 

mean squared error calculated as (Equation 19): 

𝑀𝑆𝐸 =
∑ ∑ |𝑋(𝑖, 𝑗) − 𝑌(𝑖, 𝑗)|2𝑁

𝑗=1
𝑀
𝑖=1

𝑀 × 𝑁
 (19) 

The higher value of PSNR means the better contrast 

enhancement. Figure 7 shows the mean and the standard 

 
Figure 5. A sample of dataset image, the enhanced images by eight histogram equalization methods, and the correspondent 

histograms 

 

Figure 6. Absolute Mean Brightness Error (AMBE)  
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deviation of PSNR for all the 50 images and their enhanced 

versions obtained by the eight equalizing methods.    

3.3. Quantitative Evaluation based on the Structure 

Similarity Index 

The SSI is a metric for measuring the similarity between 

two images.  

For two images of X and Y, it is defined as (Equation 20): 

𝑆𝑆𝐼(𝑋, 𝑌) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 (20) 

Where 𝜇𝑋 is the mean of the input image 𝑋, 𝜇𝑌 is the 

mean of the enhanced image 𝑌, 𝜎𝑋 is the standard deviation 

of image 𝑋, 𝜎𝑌 is the standard deviation of image 𝑌, 𝜎𝑋𝑌 

is the square root of covariance of image 𝑋 and 𝑌, and 

𝐶1 and 𝐶2 are two constants. 

This metric has a value between zero to one; a closer 

value to one illustrates the more similarity between input 

and the enhanced images. Figure 8 shows the mean and 

the standard deviation of SSI for all the 50 images and 

their enhanced versions obtained by the eight equalizing 

methods.  

3.4. Quantitative Evaluation based on the Entropy  

The entropy of an image indicates the richness of the 

image details and is defined as (Equation 21): 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦[𝑝] = − ∑ 𝑝(𝑋𝑘) log2 𝑝(𝑋𝑘)

𝐿−1

𝐾=0

 (21) 

Where 𝑝 is the image PDF. Whatever the entropy of 

the enhanced image (𝐸𝑌) has a higher and closer value 

to the entropy of the original image (𝐸𝑋), the intensity 

saturation effect, resultant by HE in higher intensities, 

decreases (Equation 22). 

𝐸𝑑𝑖𝑓𝑓 = 𝐸𝑋 − 𝐸𝑌 (22) 

Figure 9 shows the mean and the standard deviation 

of entropy difference (𝐸𝑑𝑖𝑓𝑓) for all the 50 images and 

their enhanced versions obtained by the eight equalizing 

methods.  

4. Discussion 

Thermography imaging is one of the effective and 

non-invasive methods in breast cancer screening. The 

acquired images are initially available as gray-level images. 

Increasing the image quality provides a better visual 

intuition and improves the specialist’s diagnosis. One way 

of increasing the image quality is contrast enhancement 

that can be achieved by HE techniques. These techniques 

enhance the contrast of the image by redistributing the 

intensity of the gray levels in the whole dynamic range. 

A variety of methods based on HE is available some of 

which were reviewed in this paper. Among them are: 

GHE, BBHE, equal area DSIHE, LHE, CLAHE, and 

AGCWD.  

 

Figure 7. Peak Signal to Noise Ratio (PSNR) 

 

Figure 8. Structure Similarity Index (SSI)  

 

 

Figure 9. Entropy difference  
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Methods such as HE equalize the image globally meaning 

that it uses all of the gray levels in the histogram. This 

leads to transforming the background intensities toward 

the brighter ones and saturation may also occur meaning 

that the higher gray levels will be mapped to the maximum 

value. Consequently, this reduces the image contrast. 

On the other hand, the brightness of the image may not 

be preserved which is essential in medical images. Other 

methods such as BBHE, and DSIHE try to preserve the 

mean brightness by decomposing the image based on the 

mean and the median of the gray levels, respectively. But, 

as Figure 5 shows, mean and median may not be a proper 

indicator at least for breast thermography images. These 

methods also suffer from shifting the lower background 

intensities toward brighter ones causing contrast reduction. 

This problem also exists in LHE and CLAHE. These two 

methods also require to some parameters set manually 

such as window size and clip parameter and complicates 

the automatic preprocessing. Another important problem 

associated with LHE and CLAHE is spurious contours 

generated in the enhanced images that in fact means 

they manipulate the original image. Since thermography 

images are of medical type, therefore this problem cannot 

be overlooked. According to Figure 5, AGCWD solves 

the problem of lower gray level shifting but also suffers 

from saturation in higher gray levels.  

To solve the mentioned problems, we proposed to apply 

the equalization method only on the object part of the 

image i.e., body. To do so, we proposed thresholding the 

gray level histogram by Otsu’s method to first extract 

the body. Then, HE was applied to the second part of the 

histogram (TH/HE). This solves the problem of gray 

level shifting but not the saturation problem in higher 

intensities (Figure 5). To modify (TH/HE), we proposed 

to fit a bimodal Gaussian model on the temperature 

histogram rather than gray levels histogram. The first 

Gaussian models the low-temperature background and 

the second one models the body parts in the image 

(Figure 2). Mapping the temperatures in the range of 

m±3σ to the corresponding gray levels and restricting 

equalization on that range (GM/HE) not only solves 

the low gray level shift problem but also saturation as 

well as brightness preservation problem.   

In this paper, we did not limit evaluation by just subjective 

visualization of the enhanced images. We also computed 

four quantitative metrics (Figures 6 to 9). As Figure 6 

shows, based on AMBE criterion, GM/HE has the best 

and AGCWD has the worst performance. This means 

the enhanced image by GM/HE has the least amount 

of manipulation and most resemblance to the original 

image, the two features that are important for medical 

image preprocessing. According to Figure 7, GM/HE 

has the highest PSNR although, the variance has also 

a high value. Checking the numerical values of PSNR 

for all the 50 images showed that the higher variance 

is attributed to a couple of images in the datasets. Based 

on SSI (Figure 8), CLAHE is the worst method and this 

is also apparent from Figure 5 since it produces artifactual 

contours. GM/HE has still better performance based 

on this metric. Finally, based on Figure 9, GM/HE has 

the least entropy difference among the methods.  

Based on the results and explanations provided, we 

conclude that GM/HE is a HE method that considers 

the content of the medical image. Not only based on 

subjective visualization but also based on objective 

criteria, this method has a suitable performance in 

enhancing the quality of breast thermography images. 

Therefore, this method can help specialists to have better 

visualization and therefore an accurate diagnosis of breast 

abnormalities. In addition, as future work, we propose 

to use LHE in the framework of GM/HE since LHE seems 

to have better performance based on objective parameters. 
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