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Abstract 

Purpose: Working Memory (WM) plays a crucial role in many cognitive functions of the human brain. Examining 

how the inter-regional connectivity and characteristics of functional brain networks modulate with increasing WM 

load could lead to a more in-depth understanding of the WM system. 

Materials and Methods: To investigate the effect of WM load alterations on the inter-regional synchronization and 

functional network characteristics, we used Electroencephalogram (EEG) data recorded from 21 healthy participants 

during an n-back task with three load levels (0-back, 2-back, and 3-back). The networks were constructed based on 

the weighted Phase Lag Index (wPLI) in the theta, alpha, beta, low-gamma, and high-gamma frequency bands. After 

constructing the fully connected, weighted, and undirected networks, the node-to-node connections, graph-theory 

metrics consisting of mean Clustering coefficient (C), characteristic path Length (L), and node strength were analyzed 

by statistical tests.  

Results: It was revealed that in the presence of WM load (2- and 3-back tasks) compared with the WM-free condition 

(0-back task) within the alpha range, the Inter-Regional Functional Connectivity (IRFC), functional integration, functional 

segregation, and node strength in channels located at the frontal, parietal and occipital regions were significantly 

reduced. In the high-gamma band, IRFC was significantly higher in the difficult task (3-back) compared to the easy 

and moderate tasks (0- and 2-back). Besides, locally clustered connections were significantly increased in 3-back 

relative to the 2-back task.  

Conclusion: Inter-regional alpha synchronization and alpha-band network metrics can distinguish between the WM 

and WM-free tasks. In contrast, phase synchronization of high-gamma oscillations can differentiate between the levels 

of WM load, which demonstrates the potential of the phase-based functional connectivity and brain network metrics 

for predicting the WM load level. 

Keywords: Electroencephalogram; Working Memory; Functional Connectivity; Weighted Phase Lag Index; Graph 

Theory. 
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1. Introduction  

Working Memory (WM) refers to a short-term 

memory system that enables temporary storage, 

retrieval, and manipulation of information. The WM 

plays a vital role in the complex cognitive functions of the 

human brain, such as reasoning, problem-solving, 

language comprehension, and learning [1]. Increasing 

the difficulty level of WM-related tasks can increase the 

amount of load imposed on the WM system and affect 

cognitive performance [2]. The n-back task is a popular 

experimental paradigm for exploring WM function under 

varying difficulty levels. As n increases, the task becomes 

more difficult and the load imposed on WM increases 

[3]. Most of previous studies on WM have focused on 

the effect of the presence of or alteration in WM load 

on the hemodynamic activity of brain regions using 

functional Magnetic Resonance Imaging (fMRI) and 

functional Near-Infrared Spectroscopy (fNIRS) modalities. 

These studies have generally revealed load-dependent 

activation in the specific regions of prefrontal and parietal 

cortices during the n-back task [3-7]. 

Although brain activation-based analysis provides 

valuable information, a more precise comprehension of 

the WM system would not be attainable without brain 

connectivity analysis. Functional connectivity is generally 

defined as the temporal dependency of signals from different 

anatomical regions [8]. Phase-based connectivity analyses 

employing electrophysiological data are widely used in 

the literature due to their neurophysiological interpretation 

and fast computation speed. The idea of phase-based 

connectivity methods is that when neural populations 

communicate, their oscillatory processes, measured through 

the phase, become synchronized [9]. 

Numerous studies have revealed that spatially 

separated brain regions can be functionally related. This 

mechanism of the brain has inspired researchers to examine 

the brain as a complex network [10]. In graph theory, a 

powerful mathematical framework used to analyze complex 

networks, networks are represented as graphs. In terms 

of Electroencephalogram (EEG)-based functional networks, 

graph nodes are EEG electrodes, and edges are some 

measures of functional interaction between pairs of 

electrodes. The graph-theoretical measures describe 

the properties of the reconstructed functional networks, 

such as functional segregation, functional integration, and 

the importance of each brain region. Functional segregation 

is the ability of the brain to process information in 

distinct dense regions, known as clusters, while functional 

integration refers to the rapid combination of information 

from different regions [11]. 

Examining how the characteristics of functional brain 

networks modulate with increasing WM load can help 

us gain a more precise understanding of the WM system. 

A limited number of studies have explored this aspect 

in detail. For example, in a study conducted by Dai et al. 

(2017) n-back task with two difficulty levels (0- and 2-

back) was employed, and the Pearson correlation coefficient 

between the EEG signals projected on the source space 

in the theta and alpha bands was calculated. The authors 

reported that, along with memory load increase, functional 

integration in the theta band increased, while functional 

segregation in the alpha band decreased [12]. In another 

study, Sun et al. (2019) used the Pearson correlation 

coefficient between the fNIRS channels to evaluate 

hemodynamic-based connectivity in the prefrontal cortex. 

Their results revealed that the length of the network paths 

was longer in the 2-back task than in the 0-back task [13]. 

To generalize the results of such studies, more load levels 

should be examined. Besides, an increasing number of 

findings suggest that high-frequency oscillations, especially 

high-gamma oscillations, play an important role in high-

order cognitive processing involved in WM; accordingly, 

multi-frequency band analysis could lead to a more thorough 

understanding of the WM-related characteristics of brain 

networks [14-16]. 

In this study, we increased the number of load levels to 

three (0-back, 2-back, and 3-back). We used EEG data, 

weighted Phase Lag Index (wPLI) as a phase-based 

connectivity measure, and graph-theoretical metrics to 

investigate the effect of increasing WM load on inter-

regional interactions and characteristics of functional 

cortical networks in the five frequency bands, including 

theta, alpha, beta, low-gamma, and high-gamma. To the 

best of our knowledge, the present study is the first study 

that has used wPLI employing EEG data to examine 

the effect of WM load-related alterations on functional 

connectivity. 

The remainder of the paper is organized as follows. 

Section 2 describes dataset and data pre-processing. 

This section also explains our methodology, including 

brain functional network construction, graph local and 

global measures estimation, and statistical analyses. 

The experimental results are presented in section 3. 

Finally, Section 4 discusses the findings and Section 5 

concludes the work. 
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2. Materials and Methods  

2.1. N-back Dataset 

In this work, we used an open-source dataset collected 

at the Technical University of Berlin by Shin et al. 

(2017) [17]. The data were recorded from 26 healthy 

right-handed participants who performed the n-back task 

at three load levels (conditions), including 0-back, 2-back, 

and 3-back. Data from five participants were excluded 

from further analysis due to relatively large noise. Thus, 

a total of 21 participants (16 females and 5 males) with 

a mean age of 28.86 ± 3.9 (mean ± standard deviation) 

years old were included in the data sample. The dataset 

consisted of three sessions, where one session contained 

three blocks of each condition. A total of 180 trials per 

condition were performed by each participant. In each 

trial, first, a random one-digit number was shown for 

0.5 s. Then, the number disappeared, and a fixation cross 

appeared for 1.5 s. During this time, participants had to 

press the ‘target’ or ‘non-target’ button, according to the 

displayed number. Data were recorded using 28 EEG 

electrodes (plus ground and reference electrodes) according 

to the international 10-5 system with a sampling rate of 

1000 Hz. Figure 1 depicts the location of EEG electrodes. 

For further details of the data acquisition protocol, please 

refer to reference section [17].  

2.2. Pre-Processing 

The EEG data were pre-processed using EEGLAB 

toolbox (version 2020.0) running under MATLAB 2020a 

(MathWorks, CA, USA) [18]. First, a high-pass zero-

phase Hamming-windowed sinc Finite Impulse Response 

(FIR) filter (cut -off frequency 0.5 Hz, transition bandwidth 

1 Hz) was applied to continuous EEG data [19]. Next, data 

were re-referenced to the average of all EEG channels and 

were decomposed using Independent Component Analysis 

(ICA) based on the Adaptive Mixture ICA (AMICA) 

algorithm [20]. Common artifacts were identified by 

the ICLabel classifier and visually inspected based on 

their spectra, topography (spatial map), and time course 

[21]. Components corresponding to eye movements and 

muscle artifacts were removed. Further, a notch filter 

(zero-phase Hamming-windowed sinc FIR, cut -off 

frequencies 46 and 54 Hz, transition bandwidth 2 Hz) 

was applied to remove line noise. One sample of EEG 

signals before and after pre-processing is illustrated in 

Figure 2. Finally, the continuous data were segmented into 

epochs of -1 to 3 s following the stimulus onset. It should 

be noted that our time period of interest is from 0 to 2 

s and these extra 1-s zones (i.e., from -1 to 0 s and 

also from 2 to 3 s relative to stimulus onset), which 

substantially reduce edge artifacts (high-amplitude 

 
Figure 2. An example of raw (top plot) and pre-processed EEG signals (bottom plot) 

 

 

Figure 1. The location of EEG electrodes 
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broadband power artifacts resulting from time-frequency 

decomposition of sharp edges), would be cut after time-

frequency decomposition [9].  

2.3. Phase-Based Functional Connectivity  

Estimation 

As mentioned earlier, wPLI was computed to estimate 

functional connectivity between each pair of electrodes. 

wPLI assesses the phase lagging consistency between two 

oscillating time series from two EEG channels. wPLI is 

an extension of the Phase Lag Index (PLI) in which 

phase differences further away from zero or π radians 

have a greater effect on the calculated connectivity value, 

resulting in wPLI being less sensitive to uncorrelated, 

volume-conducted noise sources. wPLI is computed as 

follows (Equation 1) [22]. 

𝑤𝑃𝐿𝐼 =  
|𝐸{|𝐼(𝑆)|𝑠𝑔𝑛(𝐼(𝑆))}|

𝐸{|𝐼(𝑠)|}
 (1) 

Where 𝐼(𝑆) is the imaginary part of the cross-spectrum 

and E{.} is the expected value operator. wPLI values 

range between zero (no phase consistency) and one (fully 

phase synchrony). Since wPLI ignores the zero and 𝜋 

phase differences, it is robust to spurious functional 

connectivity due to the volume conduction and active 

reference electrodes. Thus, it is a reliable estimator for 

EEG-based functional network construction. The cross-

spectrum of each epoch was obtained by convolution of 

the time series signal with a set of complex Morlet wavelets 

with the Full Width at Half Maximum (FWHM) 

ranging from 150 to 500 ms [23]. Equation 1 was then 

used to calculate wPLI in 2-s (0 to 2 s) epochs. wPLI-

based connectivity matrices were averaged across the 

theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), low-

gamma (30-50 Hz), and high-gamma (50-80 Hz) band 

and then averaged across epochs  corresponding to each 

condition for each frequency band. As the estimation 

of the brain functional connectivity network metrics may 

highly depend on the chosen threshold value for binary 

connectivity matrix construction, no thresholding method 

was applied to the connectivity matrices. Therefore, we 

used 28×28 fully connected, weighted, and undirected 

functional connectivity matrices for the rest of the 

analyses [24, 25]. 

2.4. Graph Theory Metrics 

After network construction, the topological differences 

of networks in three conditions of the n-back task were 

assessed by some graph-theoretical measures. There are 

many metrics in graph theory to describe the characteristics 

of a network, but not all of them are relevant for studying 

the cognitive functions of the brain. Here we considered 

a number of neurobiologically interpretable network metrics. 

These measures detect aspects of functional integration, 

functional segregation and quantify the importance of 

individual brain regions (centrality). Network measures 

were computed employing the Brain Connectivity toolbox 

[11]. The considered graph theory metrics are described 

in the following. 

2.4.1. Characteristic Path Length (L) 

The characteristic path Length (L), defined as the 

average of the shortest paths between all pairs of nodes, 

is the most commonly used measure of functional 

integration. This measure is inversely related to the 

brain’s ability to rapidly combine pieces of specialized 

information from distributed brain regions. Generally, a 

short L indicates the effective integrity and rapid 

information propagation between the brain regions. In 

this study, L was computed as (Equation 2): 

𝐿 =  
1

𝑛(𝑛 − 1)
∑ ∑ ⅆ𝑖𝑗

𝑗∈𝑁,𝑗≠𝑖

   

𝑖∈𝑁

 (2) 

In which n refers to the number of nodes, N is the 

set of all nodes in the network, and ⅆ𝑖𝑗 is the shortest 

weighted path (i.e., the inverse of wPLI) between node 

i and j. 

2.4.2. Mean Clustering Coefficient (C) 

The mean Clustering coefficient (C) of the network 

reflects, on average, the prevalence of clustered connectivity 

around individual nodes. Therefore, it generally shows 

functional segregation. The existence of clusters implies 

the presence of specific brain regions grouped to perform 

specialized processing. In this study, C was calculated 

as (Equation 3): 

𝐶 =  
1

𝑛(𝑛−1) (𝑛−2)
∑ ∑ (𝑤𝑃𝐿𝐼𝑖𝑗  𝑤𝑃𝐿𝐼𝑖ℎ 𝑤𝑃𝐿𝐼𝑗ℎ) 

1

3𝑗,ℎ∈𝑁𝑖∈𝑁   (3) 

Where n is the number of nodes, and N is the set of 

all nodes in the network. 

2.4.3. Node Strength 

The node strength refers to the sum of weights of 

links connected to the node. Node strength is one of 
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the most common measures for centrality because it 

has a direct neurobiological interpretation: nodes with 

high node strength have a high functional association 

with other nodes in the network. 

2.5. Statistical Analyses 

In order to investigate the task difficulty-related 

differences on behavioral performance (accuracy and 

reaction time), a one-way Analysis of Variance 

(ANOVA) with repeated measures was performed. Post-

hoc analysis was conducted using paired t-test with 

Bonferroni correction. A statistical significance threshold 

of 0.05 (p = 0.05) was selected for all statistical analyses 

performed in the present study. 

Since the data did not meet the assumptions for 

normality or homogeneity of variance, Friedman test, 

which is a non-parametric test, was used to compare node-

to-node wPLIs and network measures between conditions 

in all five studied frequency bands. The data were assessed 

for normality using the Shapiro-Wilk test and for 

homogeneity using the Levene test. Wilcoxon signed-

rank tests were used for post-hoc pairwise comparisons 

with Bonferroni correction for the global measures (mean 

clustering coefficient and characteristic path length) and 

False Discovery Rate (FDR) adjustment for the local 

measure of networks (node strength) and inter-regional 

connectivity [26]. 

3. Results  

3.1. Behavioral Results 

Reaction time was obtained by computing the mean 

of the response times to the stimuli at each condition. 

One-way repeated measure ANOVA with a Greenhouse-

Geisser correction indicated a significant main effect of 

memory load levels on reaction time (F (1.348, 26.966) 

= 138.022, p < 10-12). Paired t-tests with Bonferroni 

correction revealed that reaction time significantly increased 

with increasing WM load (Table 1 and Figure 3A).  

Also, accuracy was obtained by calculating the mean 

percentage of correct responses within each memory load 

condition. One-way repeated measure ANOVA with a 

Greenhouse-Geisser correction indicated a significant 

main effect of memory load levels on accuracy (F (1.396, 

27.919) = 55.37, p < 10-8). As expected, paired t-tests 

with Bonferroni adjustment revealed that accuracy 

significantly decreased with the increase of workload 

(Table 1 and Figure 3B).  

3.2. Inter-Regional Functional Connectivity 

The node-to-node connections that showed significantly 

different wPLI between the n-back tasks (FDR corrected, 

q < 0.05) are shown in Figure 4. The graphs were drawn 

on the brain maps with the BrainNet viewer toolbox [27]. 

In the alpha band, Inter-Regional Functional Connectivity 

(IRFC) was generally lower in the presence of workload 

(2- and 3-back conditions) compared to the absence of 

workload (0-back) (Figure 4A-B). Statistical analysis 

Table 1. Behavioral results: reaction time (ms) and 

accuracy (%) (mean ± standard deviation) 

N-back task Reaction time (ms) Accuracy (%) 

0-back 352 ± 71 98.9 ± 2.0 

2-back 750 ± 171 91.6 ± 7.4 

3-back 838 ± 185 82.8 ± 9.3 

 

 

 

Figure 3. The effect of task difficulty on reaction time 

(A) and accuracy (B). Error bars show the standard error 

of the mean. Average reaction time significantly increased 

with the increase of task difficulty (A). Average accuracy 

significantly decreased with the increase of task difficulty 

(B) 
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revealed a significant alpha band IRFC decrease in 2-

back compared to 0-back over frontal-central connections, 

including the AFz-Cz, AFz-CP2, F2-Cz, F2-CP1, Fp1-

C4, Fp1-CP2, and FC2-CP1, frontal-parietal connections 

of AFF5h-POz, FC2-Pz, and Fp2-P4, frontal- and central-

occipital links in F1-O1, AFF6h-O1, C3-O1, and CP5-O1, 

a central-parietal connection of P3-C4, with the decrease 

in intra frontal, central, and parietal connections of AFz-

Fp2, AFz-FC2, Fp1-FC2, F1-FC2, Cz-Cp5, and P4-P8 

(Figure 4A). Moreover, a significant decrease in IRFC 

of alpha band was found in 3-back relative to 0-back over 

frontal-parietal links, including the AFF5h-P7, AFF5h-POz, 

AFz-P7, Fp2-P7, and FC6-Pz, frontal-central connections 

of AFz-CP2, and FC6-C3, a central-parietal connection 

of C4-AFz, along with the decrease in intra frontal and 

parietal links of AFz-FC2, Fp2-FC1, and P7-POz (Figure 

4B). 

In the high-gamma band, IRFC was generally higher 

in the difficult task (3-back) relative to the easy and 

moderate tasks (0- and 2-back conditions) (Figure 4C-D). 

Statistical analysis indicated a significant high-gamma 

band IRFC increase in 3-back compared to 0-back over 

a frontal-central connection of FC5-CP2, along with a 

central-parietal connection in CP2-P4, also intra central 

links of C3-CP2, C3-CP6, and CP2-CP6 (Figure 4C). 

Furthermore, a significant high-gamma increase in IRFC 

was found in 3-back compared to 2-back over frontal- and 

temporal-parietal links, including the AFz-P3, AFz-P4, 

FC6- P8, and T8-P8, frontal-central and -temporal 

connections of AFz-C4, AFF6h-T8, and FC6-T8, also 

parietal- and occipital-central links in P7-CP6, and O1-

CP6, along with the increase in intra frontal and parietal 

links of AFz-AFF6h, AFz-FC6, and P3-Pz (Figure 4D).  

3.3. Network Characteristics 

Significant workload-related alterations (following 

Bonferroni correction) in global network metrics are 

shown in Figure 5. In the alpha band network, in the 

presence of WM load (2- and 3-back tasks) compared 

with the load-free WM task (0-back), the L value, a measure 

inversely related to functional integration, significantly 

increased (Figure 5A), while C value, a measure of functional 

segregation, exhibited a statistically significant decrease 

(Figure 5B). In the high-gamma band network, the C value 

significantly increased only in the 3-back task relative 

to the 2-back task (Figure 5C). 

 

Figure 4. Connections with significant differences in wPLI between the n-back tasks (FDR corrected, q < 0.05) within the 

alpha range (A-B) and high-gamma band (C-D). The text on the left side of the figures indicates the type of tasks that were 

compared. The color bar represents the z-statistic obtained from Wilcoxon signed-rank test between the two tasks. The red 

links indicate a significant increase in synchronization, and the blue links show a significant decrease in synchronization with 

increasing memory load. In the alpha band, IRFC was generally lower in the presence of workload (2- and 3-back tasks) 

relative to the absence of workload (0-back) (Figure 4A-B). In the high-gamma band, IRFC was generally higher in the 

difficult task (3-back) compared to the easy and moderate tasks (0- and 2-back tasks) (Figure 4C-D) 

 

 
Figure 5. Significant workload-related alterations in global network metrics (following Bonferroni correction). 

Characteristic path length in the alpha band (A), mean clustering coefficient in the alpha band (B), mean clustering 

coefficient in high-gamma band (C). In the alpha-band, the 0-back condition could be identified with a significantly 

lower characteristic path length (A) and a higher mean clustering coefficient (B) than the 2- and 3-back WM tasks. In 

the high-gamma band, only a significant increase in the mean clustering coefficient value of 3-back compared to 2-

back was observed (C). The boxplots show the 25th and 75th percentiles, median, and minimum and maximum values 
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Significant WM load-related changes in node strength 

are shown in Figure 6 and Table 2. In the alpha band, node 

strength decreased during increased mental workload 

in most of the channels. Our statistical analysis revealed 

a significant node strength decrease (after FDR correction 

for multiple comparisons, q < 0.05) within the alpha range 

in 2-back task relative to 0-back task across prefrontal 

channels, including the Fp1, Fp2, F1, F2, AFF5h, AFz, 

and FC2 also parietal channels of P4, P7, POz, and in 

left occipital O1 and right central C4. Furthermore, in the 

alpha band, a significant decrease in node strength values 

was found in 3-back task compared to 0-back task at frontal 

channels, including Fp1, Fp2, AFF5h, AFz, and FC6, parietal 

channels of P3, P4, P7, POz, and in both the left occipital 

O1 and right occipital O2 (Table 2).  

4. Discussion 

In this study, we investigated WM load-related 

alterations in phase-based IRFC and cortical network 

topology. The result of node-to-node connectivity analysis 

showed that the phase synchronization of alpha fluctuations 

in the presence of WM load (2- and 3-back tasks) was 

reduced compared to the condition without WM load (0-

back task). Most of these differences were related to the 

interactions between the frontal and other regions, especially 

Table 2. EEG channels with significant differences (Wilcoxon signed-rank test) in node strength 

values between the n-back tasks (FDR corrected, q < 0.05) within the alpha range 

EEG channel 

Median of strength values p-value 

0-back 2-back 3-back 0- vs. 2-back 0- vs. 3-back 

Fp1 14.00 13.66 13.67 0.0058 0.0058 

Fp2 14.03 13.56 13.65 0.0079 0.0058 

F1 13.89 13.53 13.61 0.0085 - 

F2 14.01 13.61 13.73 0.0058 - 

AFF5h 13.94 13.71 13.63 0.0058 0.0073 

AFz 13.92 13.62 13.63 0.0058 0.0079 

FC2 14.00 13.59 13.72 0.0058 - 

FC6 13.98 13.67 13.57 - 0.0058 

P3 14.03 13.73 13.65 - 0.0092 

P4 13.98 13.70 13.72 0.0058 0.0073 

P7 13.94 13.65 13.59 0.0098 0.0058 

POz 14.09 13.75 13.72 0.0078 0.0058 

O1 14.01 13.68 13.67 0.0073 0.0058 

O2 14.02 13.80 13.71 - 0.0058 

C4 13.98 13.76 13.66 0.0073 - 

 

 
Figure 6. Significant WM load-related changes in node strength within the alpha band networks. “*” shows a significant 

difference (Wilcoxon signed-rank test) that remained after the FDR adjustment (q < 0.05). The color bar represents the 

difference of median values of node strength between the two conditions (0-back minus 2-back; 0-back minus 3-back). 

In the alpha band, node strength was generally lower in the presence of WM load (2- and 3-back conditions) relative 

to the WM load-free condition (0-back condition) 
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the parietal cortex (Figure 4A-B). These results are consistent 

with previous findings. For example, several studies 

demonstrated an opposite relationship between the number 

of items to be remembered (WM load) and the alpha 

power [28-30]. Also, Wianda et al. (2019) showed that 

regions with stronger Event-Related Synchronization 

(ERS) also exhibited stronger functional connectivity 

in a Sternberg WM task [31]. This inverse association 

between alpha power and mental workload in these trial-

based paradigms suggests that as the WM load increases 

and the task becomes more difficult, the alpha oscillations 

will be relatively non-phase locked and less synchronized. 

In addition, we reported that phase synchronization was 

greater in the most difficult condition (3-back task) than 

the less difficult conditions (0- and 2-back tasks) within 

the high-gamma range. Most of the significant interactions 

were related to the connectivity between the frontal, 

parietal, and temporal areas, particularly in the 2-back 

vs. 3-back (Figure 4C-D). As mentioned earlier, WM 

involves the ability to maintain and manipulate information 

over a short duration of time. Synchronization of gamma 

oscillations has been discovered to be related to the 

maintenance of WM items [32, 33]. Besides, using 

Magnetoencephalography (MEG), Carver et al. (2019) 

revealed a stronger high-gamma power in the frontal, 

parietal, and temporal regions in the n-back conditions 

compared to rest, indicating synchronous high-gamma 

oscillations in high WM load conditions [14]. 

We utilized the tools provided by graph theory to examine 

the topological characteristics of the constructed functional 

networks. As demonstrated in Figure 5A, the L value of 

the 2- and 3-back WM tasks were higher than the control 

task (0-back) within the alpha range, suggesting the enhanced 

long-range connections and reduced functional integration. 

This increase in the L value can be explained by the 

decreased synchronization in the presence of workload 

and subsequently reduced weight of the graph edges (see 

the IRFC results and Equation 2). In addition, we found 

a decrease in the C value of alpha band network in the 

presence of WM load (Figure 5B). This result is consistent 

with a previous EEG study on WM that reported lower 

functional segregation in the 2-back task relative to the 

0-back task within the alpha range [12]. As shown in 

Figure 5C, there was a significant enhancement in the 

C value from 2-back to 3-back task in the high-gamma 

band, indicating that the locally clustered connections were 

increased with the increasing load demand. Moreover, 

a significant reduction in node strength was observed 

at frontal, parietal, and occipital regions in the presence 

of workload within the alpha range (Figure 6A-B). In 

general, a significant difference between the node strength 

values of WM and WM-free tasks in the alpha band was 

expected since the IRFC corresponding to the mentioned 

regions were significantly different, the sum of them (i.e., 

strength) was also expected to be significantly different 

between the two types of tasks. 

Our results suggest that phase synchronization between 

the alpha oscillations of the frontal-parietal regions can 

discriminate between the two conditions: with and without 

the workload, while phase synchronization between the 

high-gamma oscillations is more associated with high-

level WM-related processing and can differentiate between 

the levels of WM load. Thus, an effective combination 

of the phase-based IRFC and graph-theoretical metrics 

in the alpha and high-gamma band networks can be 

explored as novel features for future Brain-Computer 

Interface (BCI) studies on mental workload classification. 

Furthermore, Cross Frequency Coupling (CFC), which 

refers to a statistical dependency between the amplitude 

or phase of a slower rhythm and the amplitude or phase 

of a higher frequency, could be explored between the alpha 

and high-gamma oscillations in the future studies [34].  

There are some limitations in the current study. The 

unbalanced gender ratio (~3:1 female:male) might 

have biased our findings. Previous studies suggested 

that females outperform males in verbal WM tasks, while 

males outperform females on visuospatial WM tasks [35]. 

Also, Gao et al. (2018) revealed that men need more brain 

activations and higher EEG and fNIRS-based small world 

network properties to achieve similar performance as 

women do during verbal Sternberg tasks, suggesting that 

women surpass men in verbal WM tasks [36]. Therefore, 

the effect of gender must be taken into considerations in 

statistical analyses to obtain reliable results. In addition, 

the interpretability and generalizability of the reported 

results may be affected by the relatively small sample 

size (21 participants). Further investigations with a larger 

sample size would be necessary to confirm our findings. 

In spite of these limitations, our findings contribute to the 

understanding of WM load-related alterations in phase-

based IRFC and cortical network topology. 

5. Conclusion 

In this study, we examined the inter-regional interactions 

and topological alterations of wPLI-based networks during 

an n-back task with three load levels within five frequency 
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ranges, including theta, alpha, beta, low-gamma, and high-

gamma. Our findings reveal that inter-regional alpha 

synchronization and alpha-band network metrics can 

distinguish between the WM and WM-free tasks. In 

contrast, phase synchronization of high-gamma oscillations 

can differentiate between the levels of WM load, which 

demonstrates the potential of the phase-based functional 

connectivity and brain network metrics for predicting the 

WM load level. Taken together, these findings demonstrate 

that multi-frequency analysis of functional connectivity 

networks has the potential of providing a more detailed 

understanding of the WM system. 
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