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Abstract 

Purpose: Attention Deficit Hyperactivity Disorder (ADHD) is now recognized as the most common childhood 

behavioral disorder. This disorder causes school problems and social incompatibility. Thus an accurate diagnosis 

can help diminish such problems. In this paper, we propose a brain connectomics approach based on eyes-open 

resting state Magnetoencephalography (rs-MEG) to diagnose subjects with ADHD from Healthy Controls (HC). 

Materials and Methods: We used the eyes-open rs-MEG signals recorded from 25 subjects with ADHD and 25 

HC. We calculated Coherence (COH) between the MEG sensors in the conventional frequency bands (i.e., delta, 

theta, alpha, beta, and gamma), selected the most discriminative COH measures by the Neighborhood Component 

Analysis (NCA), and fed them to three classifiers, including Support Vector Machine (SVM) with Radial Basis 

Function (RBF) kernel, K-Nearest Neighbors (KNN), and Decision Tree to classify ADHD and HC. 

Results: We achieved the best average accuracy of 91.1% for a single-band classifier based on the COH in the 

delta-band as an input feature of the SVM. However, when we integrated the COH values of all frequency bands 

as input features, the average accuracy was slightly improved to 92.7% using the SVM classifier. 

Conclusion: Our results demonstrate the capability of a functional connectomics approach based on rs-MEG for 

the diagnosis of ADHD. It is noteworthy that, to the best of our knowledge, COH has not yet been used to diagnose 

ADHD using rs-MEG data. Furthermore, there is no study on diagnosing ADHD using eyes-open rs-MEG. Thus, 

a novelty of our proposed method is to use COH and eyes-open rs-MEG data to diagnose ADHD. Moreover, our 

proposed method showed promising results compared with previous rs-MEG studies for the diagnosis of ADHD. 

Keywords: Attention Deficit Hyperactivity Disorder; Resting State Magnetoencephalography; Functional Connectivity; 

Coherence; Neighborhood Component Analysis; Machine Learning. 
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1. Introduction  

Behavioral patterns of hyperactivity, impulsivity, 

and inattention, eventually known as Attention Deficit 

Hyperactivity Disorder (ADHD), have been described 

for centuries [1]. ADHD is now recognized as the most 

common childhood behavioral disorder in the world [2]. 

ADHD is the most prevalent neurobehavioral disorder 

in school-age children [3]. The prevalence of ADHD 

worldwide in children is estimated at 4% among boys 

and girls [4]. ADHD is characterized by inattention, or 

excessive activity, and impulsivity or their combination. 

There has been no effective biomarker to diagnose ADHD 

accurately [5]. Therefore, the ADHD diagnosis depends 

entirely on clinical tests that are subjective and prone to 

different errors. ADHD causes school problems and social 

incompatibility. The symptoms will remain in adulthood 

in 50-60% of subjects. In 25% of cases, these symptoms 

include impulsivity and antisocial behaviors [6]. Although 

it has apparent medical and social symptoms, there is no 

neurobiological sign for ADHD yet. Given the prevalence 

of ADHD and its social consequences in childhood and 

adulthood, its early diagnosis can make the treatment 

processes and psychological interventions more effective 

[7,8].  

Magnetoencephalography (MEG) is a non-invasive 

technology that measures the magnetic fields induced 

by neuronal current flow in the brain above the scalp [9]. 

MEG has been shown to be an efficient functional modality 

to measure neural oscillatory processes due to being non-

invasive and having a high temporal and a good spatial 

resolution. However, limited studies have investigated 

the feasibility of using MEG for ADHD diagnosis. One 

approach for automated diagnosis of ADHD is extracting 

features from the brain signals obtained by functional 

neuroimaging modalities and applying them to machine 

learning algorithms to distinguish individuals with ADHD 

from Healthy Controls (HC). Some previous studies 

investigating ADHD based on resting-state MEG (rs-MEG) 

signal are as follows: 

In [10], the average of Lempel-Ziv complexity value 

of the eyes-closed rs-MEG signals in five brain areas was 

used to diagnose ADHD. The results showed that the 

Lempel-Ziv complexity value in ADHD was significantly 

lower than that in HC, and this feature could help to 

diagnose ADHD with acceptable accuracy.  In [11], a 

different feature in time-space was extracted from the 

eyes-closed rs-MEG signals with the goal of diagnosing 

patients with ADHD. Gómez et al. proposed an algorithm 

using sample entropy to diagnose ADHD. They showed 

that sample entropy was significantly different between 

HC and ADHD groups. The regularity of MEG signals 

was significantly lower in HC than in ADHD [11].  

Due to the correlated information that the MEG and 

Electroencephalography (EEG) have, some articles that 

studied ADHD based on resting-state EEG signals have 

been reviewed in the following. Authors in [12], using the 

features extracted from Autoregressive (AR) model of 

just 2 EEG channels in the eyes-open resting-state condition, 

achieved a classification accuracy above 90% using a 

K-Nearest Neighbor (KNN) classifier. In [13], the AR 

model parameters were extracted from resting-state EEG 

signals of 30 individuals with ADHD and 30 HC subjects 

using the Covariance, Burg, and Yule-walker methods. 

Absolute and relative powers in several frequency bands 

were calculated using the eigenvector method's power 

spectral density estimates. The most discriminative feature 

set was selected using Correlation-based Feature Selection 

(CFS) and fed to the Support Vector Machine (SVM) and 

KNN classifiers to classify EEG signals of ADHD and HC 

subjects. Experimental results demonstrated that the 

parameters obtained using the Covariance method resulted 

in the highest classification accuracy of 85%. 

Mohammadi et al. in [14] extracted Fractal Dimension 

(FD), approximate entropy, and Lyapunov exponent as 

non-linear features from EEG signals followed by feature 

selection using two methods, Double Input Symmetrical 

Relevance (DISR) and minimum Redundancy Maximum 

Relevance (mRMR). The Multilayer Perceptron (MLP) 

was used as the classifier. The results of ADHD classification 

using DISR and mRMR were 92.28% and 93.56%, 

respectively. 

In recent years, the study of brain function has been 

performed by measuring connectivity between spatially 

separate but functionally related brain areas. This approach 

has become of key interest in investigating brain functional 

performance. Brain connectivity describes the networks 

of functional and anatomical connections across the brain. 

The functional network communications across the brain 

networks are dependent on neuronal oscillations. Detection 

of the synchronous activation of neurons can be used to 

determine the wellbeing or integrity of the functional 

connectivity in the human brain networks.  

A group of studies has studied the brain functional 

connectivity in individuals with ADHD. Franzen et al. [15] 

investigated the effect of a specific drug on the brain 
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connectivity of ADHD subjects based on the Phase-Locking 

Value (PLV) of MEG signals. Another study was done 

on the same dataset and with the aim of assessing brain 

activity in the Default-Mode Network (DMN) using 

spectral analyses [16].  

Sudre et al. [17] investigated the persistence of ADHD 

symptoms from childhood to adulthood on brain functional 

connectivity using the Coherence (COH) of eyes-closed 

rs-MEG data. Khadmaoui et al. [18] used PLV and the 

Euclidean Distance besides COH and showed that these 

extracted features were significantly different between 

ADHD and HC subjects [18].  

Authors in [19] showed that COH values of the 

frontal cortex obtained using eyes-open resting state EEG 

signals are significantly different between ADHD and 

HC groups. In [20], a study was done based on eyes-closed 

resting-state EEG signals acquired from 50 individuals 

with ADHD and 58 HC subjects. Phase Lag Index (PLI) 

was utilized to construct brain functional networks. PLI 

values were fed to Convolutional Neural Network (CNN) 

models as input. This result shows that these connectivity 

features were efficient for discriminating ADHD and HC. 

Barry et al. [21] also statistically compared the COH of 

eyes-closed resting-state EEG signals of a total of 40 

individuals with ADHD and 40 HC subjects in sensor 

space. The results showed that the frontal COH value of 

the ADHD group was statistically lower in delta, alpha, 

and gamma frequency bands. 

It is worth mentioning that COH has not yet been 

used to diagnose ADHD using rs-MEG data. Only [17] 

used COH in a statistical comparison framework. 

Furthermore, there is no study on the diagnosis of ADHD 

using eyes-open rs-MEG. As mentioned before, there are 

just two studies on diagnosing ADHD using rs-MEG 

signals, and in both of them, MEG had been recorded 

in eyes-closed condition. The objective of the current 

study is to detect ADHD using the conventional and 

straightforward functional connectivity measure of COH 

and eyes-open rs-MEG signals. In fact, we tested the 

hypothesis that the COH values of sensor-space rs-MEG 

signals in eyes-open conditions can be used for the accurate 

diagnosis of ADHD. For this purpose, COH was calculated 

in conventional MEG frequency bands (i.e., 𝛿, 𝜃, 𝛼, 𝛽, 

and 𝛾). Then we used the most discriminative COH values 

as input features to classify ADHD and HC. Our ultimate 

goal in this study was to propose a machine learning 

approach based on functional connectivity of eyes-open 

rs-MEG for ADHD diagnosis.  

This paper is organized as follows. The MEG 

dataset used in this study and our machine learning 

approach for diagnosing AHDH using COH of eyes-

open rs-MEG signals will be introduced in Section 2. 

Then in Section 3, the results will be presented. 

Afterward, we will discuss the proposed method and its 

results in Section 4. Finally, in section 5, we will conclude 

the paper, and some ideas for future works will be suggested. 

2. Materials and Methods  

2.1. Participants 

In this study, we used the Open MEG Archive 

(OMEGA), a free MEG dataset provided by the McConnell 

Brain Imaging Centre of the Montreal Neurological Institute 

and the Université de Montréal [22]. The dataset can be 

freely downloaded from [23]. We conducted our analysis 

on a subset of data with 25 healthy participants (age: 20.6 

± 2.35 years; mean ± standard deviation), including 14 

boys and 9 girls and 25 patients with ADHD (age: 20.6 

± 3.04 years; mean ± standard deviation) including 10 

boys and 15 girls. All the subjects were strictly right-

handed.  

The medical history of the ADHD participants was 

evaluated to ensure the absence of any psychotropic drugs 

or received psychotherapy. Each subject's MEG assessment 

was obtained during an eyes-open resting condition for 

about 5 minutes at a sampling frequency of 2400 Hz. The 

data were low passed at 600 Hz. The participants were 

instructed to remain awake and refrain from head and eye 

movements. The data was recorded by a CTF MEG system 

(VSM MedTech Inc., Coquitlam, Canada) using 275 axial 

gradiometers. Figure 1 is a map with the full list of 

sensor names for this CTF system. Moreover, bipolar 

Electrocardiogram (ECG) and vertical and horizontal 

Electrooculogram (EOG) were recorded from all subjects.  

2.2. Preprocessing 

Pre-processing of the brain signals was done by 

Brainstorm toolbox in MATLAB 2020b software.  At 

first, a 60 Hz notch filter and a 0.3-90 Hz bandpass filter 

were applied to eliminate powerline noise and remove 

the fluctuations of non-neural origin, respectively. Then 

physiological artifacts (e.g., eye blinks and heartbeats) 

were removed using both visual inspection and Signal-

Space Projectors (SSP) [25]. After all, the signals were 

divided into artifact-free epochs of 5-sec duration (12000-
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time samples) for further analyses. An average of 7 clean 

epochs was selected from the MEG signals of each subject. 

The maximum number of epochs extracted from each 

subject was 9, and the minimum number of epochs was 5. 

In fact, the number of epochs was restricted due to the 

noisiness of ADHD data which made the selection of 

clean 5s epochs from total data a challenging process.  

Afterward, MEG data were decomposed to five 

frequency bands, including delta (0.3-4 Hz), theta (4-8 Hz), 

alpha (8-12 Hz), beta (12–30 Hz), and gamma (30–60 Hz) 

using 3rd order Butterworth filters. 

2.3.  Feature Extraction 

The human brain is an enormous network of connected 

pathways. It communicates through synchronized electric 

brain activity along fiber tracts. The synchronized activity 

within this neuronal network can be detected by MEG 

and investigated using network connectivity analysis. 

Connectivity analyses of the brain map out the brain 

communication networks in which the brain function. In 

the frequency domain, functional connectivity measurements 

can be analyzed with methods such as COH which is a 

mathematical index that somehow quantifies the 

synchronicity of neuronal patterns of brain activity 

oscillating. This technique quantifies the neuronal patterns 

of synchronicity measured between spatially separated 

MEG sensors and is a normalized linear measure of 

functional connectivity [26]. 

In this study, COH is used as input features of various 

classifiers. The COH provides information about the degree 

of linear coupling between two signals in a specific 

frequency band. The COH between two MEG sensors 

(𝑡) and 𝑦(𝑡) in each frequency band can be calculated as 

follows (Equation 1) [26]: 

𝐶𝑂𝐻𝑥𝑦
𝑏𝑎𝑛𝑑 = ∑

|𝑆𝑥𝑦(𝑓)|
2

𝑆𝑥𝑥(𝑓).𝑆𝑦𝑦(𝑓)
𝑓∈𝑏𝑎𝑛𝑑  ; 

band = {𝛿,𝜃,𝛼,𝛽,𝛾} 

(1) 

Where 𝑆𝑥𝑥(𝑓) is the cross-power spectral density, and 

𝑆𝑥𝑥(𝑓) and 𝑆𝑦𝑦(𝑓) are the respective auto-power spectral 

densities. COH values vary between 0 and 1. The 

closer this value is to 0, the weaker the linear 

dependence between MEG sensors, whereas the closer 

this value is to 1, the stronger the linear coupling between 

them. COH was calculated between the time series of 

each two sensors in each frequency band (Figure 2). In 

order to calculate COH, Brainstorm (A Matlab toolbox 

for the processing of MEG and EEG signals) was used. 

It is worth mentioning that just common sensors between 

all subjects were considered for the estimation of COH. 

Therefore, 36046 COH features were extracted from each 

epoch between all pairs of MEG sensors.  

2.4. Feature Selection 

All of the COH values extracted from MEG may 

not be appropriate for classification. Additionally, the 

presence of inefficient features leads to a burden for any 

classifier. In this study, the Neighborhood Component 

Analysis (NCA) was employed as a nonparametric and 

supervised feature selection algorithm to select the most 

 

Figure 1. The map of a full list of sensor names for this CTF system [24] 
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discriminative features. This algorithm is based on the 

KNN algorithm and aims to obtain a weight vector based 

on the importance of features by maximizing the mean 

Leave-One-Out (LOO) classification accuracy across the 

training data with an optimized regulation parameter 

[27]. 

Assume that 𝑇 = {(𝑥1, 𝑦1), … , (𝑥𝑖 , 𝑦𝑖), … (𝑥𝑁 , 𝑦𝑁)} 

is the training subject set, where 𝑥𝑖 is a feature vector, 𝑦𝑖 

is its corresponding class label, and N is the number of 

training subjects. The weighted distance between the two 

samples 𝑥𝑖 and 𝑥𝑗 is computed as follows (Equation 2): 

𝐷𝑤(𝑥𝑖 , 𝑥𝑗) =∑𝑤𝑟
2|𝑥𝑖𝑟 − 𝑥𝑗𝑟|

𝑑

𝑟=1

 (2) 

Where 𝑤𝑟 is a weight associated with rth feature. The 

NCA algorithm aims to maximize its LOO classification 

accuracy on the training set T.  

The probability of data point xi  selects another data 

point xj  as its nearest neighbor is defined as (Equation 3): 

𝑝𝑖𝑗 =

{
 

 

 

𝑘 (𝐷𝑤(𝑥𝑖 , 𝑥𝑗))

∑ 𝑘 (𝐷𝑤(𝑥𝑖 , 𝑥𝑗))𝑘≠𝑖

        𝑖𝑓 𝑖 ≠ 𝑗

               0                          𝑖𝑓 𝑖 = 𝑗

 (3) 

where k(.) is a kernel function, hence, the probability 

of 𝑥𝑖 being accurately classified with the correct class 

label is as follows (Equation 4): 

𝑝𝑖 = ∑ 𝑦𝑖𝑗𝑝𝑖𝑗𝑗   ;   𝑦𝑖𝑗 = {
1, 𝑖𝑓  𝑦𝑗 = 𝑦𝑖 

0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4) 

Moreover, to perform feature selection and alleviate 

overfitting, a regularization term is introduced and hence 

the following object function is obtained (Equation 5): 

𝑓(𝑤) =∑∑𝑦𝑖𝑗𝑝𝑖𝑗 − 𝜆∑𝑤𝑟
2

𝑑

𝑟𝑗𝑖

 (5) 

Where λ is a non-negative regularization parameter 

tuned via cross-validation.  Using 𝑓(𝑤) derivate with 

respect to 𝑤𝑟 leads to the weights of features. Ultimately 

features weighing more than a preset threshold are 

selected [27]. 

2.5. Classification 

Three classifiers: (1)  SVM with Radial Based Function 

(RBF), (2)  KNN  )K = 3), and (3) decision tree were used 

in the current study to classify ADHD and HC subjects. 

We used the COH of 269 MEG sensors in each of the 

five conventional frequency bands as the input feature set 

for the classifiers. These five feature sets were also integrated 

to likely achieve better performance. The NCA algorithm 

selected the most discriminative features. Then the selected 

features were fed to the three classifiers to identify ADHD 

and HC subjects. We used the Leave-One-Subject-Out 

Cross-Validation (LOSO-CV) to evaluate the performance 

of the classifiers. It is noteworthy that, from all the features 

provided by the NCA algorithm among all repetitions 

of LOSO-CV, we selected the most replicated ones, which 

were repeated in at least 50% of repetitions. Consequently, 

five features were selected for each frequency band and 

also for the all-band case. The LOSO-CV results across 

all subjects were used to calculate the accuracy, sensitivity, 

specificity, and Cohen's kappa coefficient of the proposed 

method. Figure 3 demonstrates a summary of the proposed 

method. 

3. Results  

The selected features, inputs of classifiers for both  

single-band and all-band cases are shown in Table 1. 

The performance criteria of the three classifiers based on 

LOSO-CV using selected features are also reported in 

Tables 2, 3, and 4. 

 

Figure 2. An example of COH values of one subject from the ADHD group versus a subject from the HC group 
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  The best classification accuracy using the single-band 

COH measures was obtained using the delta band that 

shows the importance of this frequency band for ADHD 

diagnosis. In addition, SVM outperformed other classifiers. 

By integrating features of all five frequency bands, the 

average accuracy of the SVM classifier was slightly 

improved from 91.1% to 92.7%.   

 

Figure 3. Block diagram of the proposed method 

 Table 1. Selected features by NCA algorithm 

Frequency band Features (COH values between two MEG sensors) 

𝛿  
(MRF23,MRF21)-(MRO22,MRO23) 

(MLF51,MLC11)-(MRF22,MRF12)-(MRF12,MRF11) 

𝜃 
(MRT51,MRT32)-(MRT51,MRT42) 

(MRP31,MLP31)-(MLO32,MLO22)-(MRT52,MRT42) 

𝛼 
(MZF01,MRF13)-(MRF12-MLF32) 

(MRF11-MLF23)-(MRF22,MLF23)-(MZF03,MRF41) 

𝛽 
(MRT52,MRT53)-(MLP23,MLO33) 

(MLP22,MLP12)-(MRF44,MRF41)-(MZF01,MRF13) 

𝛾 (MLP32,MLP22)-(MLP43,MLP33)-(MRT52,MRT43) (MRP43,MRP44)-(MRT52,MRT53) 

All-band 
(𝛾:MRT52,MRT43)-( 𝛾:MRP43,MRP44) (𝛾:MLP32,MLP22) (𝛿:MRF12,MRF11)-

(𝛽:MRT52,MRT53) 

 
Table 2. Classification performance of KNN (mean %± std%) 

Frequency Band  Accuracy Sensitivity Specificity Kappa 

𝛿 87.7 ± 1.9 96.2 ± 1.8 79.7 ± 2.3 0.75 ± 0.03 

𝜃 72.5 ± 2.3 84.2 ± 1.7 61.4 ± 2.2 0.45 ± 0.04 

𝛼  71.7 ± 2.8 82.5 ± 2 61.4 ± 3.1 0.44 ± 0.04 

𝛽 72.3 ± 2.9 83.8 ± 2 61.4 ± 3.1 0.45 ± 0.04 

𝛾 84.2 ± 2.2 92.7 ± 1.4 76.1 ± 2.6 0.68 ± 0.03 

All-band 89.6 ± 2 94.9 ± 1.1 84.6 ± 2.6 0.79 ± 0.03 

 
Table 3. Classification performance of Decision Tree (mean% ± std%) 

Frequency Band Accuracy Sensitivity Specificity Kappa 

𝛿 86.1 ± 1.4 87.7 ± 1.3 82.5 ± 1.6 0.72 ± 0.03 

𝜃 75.6 ± 2 78.6 ± 1.7 72.8 ± 2 0.51 ± 0.04 

𝛼 80.4 ± 2.1 81.2 ± 2 79.7 ± 2.8 0.61 ± 0.04 

𝛽 80.8 ± 2.4 80.8 ± 2.4 80.9 ± 2.2 0.62 ± 0.04 

𝛾 85.6 ± 1.9 85.5 ± 1.5 85.8 ± 2.3 0.71 ± 0.03 

All-band 88.3 ± 1.8 90.2 ± 1.7 86.6 ± 1.8 0.77 ± 0.03 
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4. Discussion  

In this paper, the identification of ADHD using eyes-

open rs-MEG signals was performed by computing the 

COH in sensor-space in five conventional frequency 

bands using three classifiers. To the best of our knowledge, 

there has been no study on the diagnosis of ADHD using 

eyes-open rs-MEG, and just two studies used eyes-closed 

rs-MEG data [10] and [11]. Their best accuracy, sensitivity, 

and specificity were 85.6%, 92.7%, and 78.5%, respectively 

in [10] and 85.7%, 64.29%, and 75%, respectively in [11]. 

According to Table 5, we achieved better performance 

in the current study compared to the two previous studies 

as our best results were accuracy of 92.7%, sensitivity 

of 93.6%, and specificity of 91.9% on a larger dataset 

than theirs. Thus our proposed algorithm may be considered 

more reliable than the previous methods and seems to be 

a promising step toward designing an accurate machine 

learning approach of low computational cost for ADHD.  

The results of all three classifiers indicated that the 

COH values in delta bands are the most discriminative 

features for diagnosing ADHD, which manifests that 

ADHD may affect the connectivity of the delta band 

more. This claim is consistent with the hypothesis that 

ADHD affects the delta band asserted in [18,21,28]. In 

[18], the results showed that interaction among MEG 

channels in resting state conditions is statistically different 

at delta and gamma bands. Our results confirm this claim 

as we achieved the highest accuracy using these frequency 

bands, especially the delta band. Also, Monge et al. in 

[28] showed that fuzzy entropy of rs-MEG is statistically 

different in the delta band between ADHD and HC. In 

the other another study, the EEG profile of adults with 

ADHD and HC was investigated using an eyes-open 

resting condition. The results showed that the absolute 

amplitude of the delta band is statistically different between 

the two groups [29].  

It is worth mentioning that, according to Table 4, the 

selected features of each frequency band generally belong 

to a limited region which is a part of the frontal cortex. It 

may be hypothesized the nearly focal disorganization of 

the brain connectivity in ADHD. In [21,19], as mentioned 

in the introduction section, COH values between EEG 

sensors were significantly different in the delta band and 

frontal brain region, which supports the hypothesis that 

the most different COH values are mainly in this region. 

We believe that ADHD may cause dysfunction in this 

area which needs to be more studied more in future 

researches. As a result, it seems that focusing on these 

areas and further studying them may help diagnose 

ADHD more accurately. 

5. Conclusion 

In conclusion, the present study showed a difference in 

COH values in sensor-space between HC and ADHD, 

Table 4. Classification performance of SVM (mean% ± std%) 

Frequency Band Accuracy Sensitivity Specificity Kappa 

𝛿 91.1 ± 1.4 94.4 ± 1.1 87.8 ± 1.6 0.82 ± 0.03 

𝜃 78.8 ± 2.1 85.5 ± 1.9 72.4 ± 2 0.58 ± 0.04 

𝛼 74.6 ± 2.5 73.9 ± 2 75.2 ± 2.8 0.49 ± 0.04 

𝛽 81.7 ± 2.4 79.1 ± 2.6 84.1 ± 2.2 0.63 ± 0.04 

𝛾 86.1 ± 2 89.3 ± 1.7 82.9 ± 2.3 0.72 ± 0.03 

All-band 92.7 ± 1.6 93.6 ± 1.3 91.9 ± 1.9 0.85 ± 0.02 

 
Table 5. Important information about the previous studies on ADHD diagnosis using rs-MEG 

 
Participants No. 

(HC + ADHD) 

Resting 

mode 

Epoch 

length 
Features Classifier 

[6] 14+17 Eyes-closed 20 sec 
Average of LZC scores in 

Anterior brain regions 
Logistic regression 

[7] 14+14 Eyes-closed 5 sec 
Average of Sample Entropy in 

Anterior brain regions 
Thresholding 

The proposed 

work 
25+25 Eyes-open 5 sec COH 

KNN, Decision tree, 

SVM with RBF, kernel 
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especially in the delta frequency band. The proposed 

algorithm was performed based on three different 

classifiers. The results showed that ADHD may cause 

dysfunction in connectivity of the delta band more than 

the other frequency bands. Moreover, the selected COH 

values between MEG sensors are mainly focused on just 

one of the brain regions, which is a part of the frontal 

brain region. We hypothesize that the functional connectivity 

of this area is disorganized due to ADHD. These hypotheses 

are consistent with previous studies based on resting resting-

state MEG and EEG signals and need to be studied in 

more details in future works. 

It is noteworthy that fine-tuning the proposed algorithm 

may provide better results in predicting ADHD. Also, 

investigating the use of different linear and non-linear 

connectivity measures, phase synchronization measures, 

different graph parameters, and source-space connectivity 

features are some future works. Moreover, proposing 

age-specific or gender-specific Computer-Aided Diagnosis 

Systems (CADS) for ADHD may lead to better classification 

performance. In addition, different classifiers, feature 

extraction, and selection methods can be investigated in 

the future to obtain better results. 
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