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Abstract 

Purpose: Muscle synergy is a functional unit that coordinates the activity of a number of muscles. In this study, 

the extraction of muscle synergies in three types of hand movements in the horizontal plane is investigated. 

Materials and Methods: So, after constructing the tracking pattern of three signals, by LabVIEW, the 

Electromyography (EMG) signal from six muscles of hand was recorded. Then time-constant muscle synergies 

and their activity curves from the recorded EMG signals were extracted using Non-negative Matrix Factorization 

(NMF) method. 

Results: Comparison of these patterns showed that the non-random motions’ synergies were more similar than 

the random motions among different individuals. It was observed that in all movements, the similarity of the 

synergies in one cluster was greater than the similarity of their corresponding activation curves. 

Conclusion: The results showed that the complexity of the recurrence plot in random movement is greater than 

that of the other movements.  

Keywords: Muscle Synergy; Electromyography Signal; Non-Negative Matrix Factorization; Phase Space; Recurrence 

Quantification Analysis. 
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1. Introduction  

The term muscle synergy has been extensively studied 

in the literature [1-3]. The qualitative definition of synergy 

is built on three bases: sharing, flexibility/sustainability, 

and task dependency [4, 5]. Electromyography (EMG) 

Signal analysis using linear and nonlinear tools is, 

therefore, a basic need. EMG patterns are trackers of 

muscle synergies and their activation coefficients. One 

way to learn about the mechanism of motor deficits and 

spinal cord injuries is to study muscle synergies [5]. 

Understanding the mechanism of central nervous system 

control of hand movement and the creation of efficient 

human-machine interfaces depends on the extraction of 

synergistic patterns [5]. Two time-invariant and time-

varying models have been identified for muscle synergy 

[3]. In the time-invariant model there is no lag time 

between different muscles of a synergy, that is, if a 

synergy is activated at a certain time, all the muscles 

related to that synergy will be activated at the same 

time [6]. In the time-varying model, different muscle 

synergies have their own temporal activity profiles, and 

there may be different time delays between activating 

different synergies [6]. Different matrix decomposition 

methods are used to derive time-invariant synergies [7]. 

Considering matrix decomposition topics is one of the 

recent trends in blind source separation. The blind source 

separation method is to obtain a set of independent sources 

that are combined with an unknown system [8]. Many 

real data are non-negative, and their hidden components 

have physical meaning only when they are non-negative. 

In practice, when under control components have physical 

interpretation, non-negative and data fragmentation is 

often desirable and necessary [9,10]. The Non-negative 

Matrix Factorization (NMF) method has been studied by 

many researchers but has been further refined by the 

work of Lee and Seong published in Nature and NIPS 

Journals [9,10]. The trajectory of a dynamic system in 

phase space can describe the development of system 

behavior over time and in phase space [11]. The primary 

purpose of Recurrence Plot (RP) is to visualize the 

dynamic systems' trajectory in phase space, which is 

particularly useful in high-dimensional systems. The 

RP provides important information about the temporal 

evolution of these trajectories [12,13]. In addition to 

the visual information obtained from RP, several complexity 

measures that quantify the small-scale structures of 

recurrence plot are known as Recurrence Quantification 

Analysis (RQA). These criteria are based on the density 

of the recurrence points and the structures of the horizontal 

and vertical lines of the recurrence plot. Calculating 

these criteria in small windows (sub-matrices) in RP 

results in a time-dependent behavior of these variables 

[11]. Much research has been done on muscle synergy 

[14-21]. Di Eola and et al. stated that the CNS's production 

of muscle activity patterns to achieve a variety of 

behavioral goals is a key issue in controlling movement. 

As a result, the EMG signals of thirteen muscles of 

four frogs were recorded during jumping, walking, and 

swimming movements. Their results showed that there 

were similarities between the synergies extracted from 

different movements [22]. Ting et al. examined muscle 

synergies to control force during a balance task. They 

used nonlinear matrix factorization to determine the 

muscle synergies of equilibrium reactions in cats to 

investigate the practical importance of such synergies for 

natural behaviors [23]. Sabzevari et al. extracted muscle 

synergy during arm reaching movements at different 

speeds. They showed that a lower reconstruction error can 

be obtained by the center of the muscle synergy clusters 

in comparison with the average of the activation coefficient 

[5]. Kabbodvand et al. extracted synchronous muscle 

synergies during fast arm reaching movements. They 

used a modified nonnegative matrix factorization to 

resolve the tonic component problem of EMG [24]. 

The purpose of this research was to study and compare 

muscle synergies in sinusoidal, quadratic, and random 

motions (which one cannot anticipate). 

2. Materials and Methods  

2.1. EMG Recording and Experiments 

The subject should sit behind a desk in a height-

adjustable chair so that his hand is parallel to the ground 

(during the test the subject's hand moves freely on the 

horizontal surface) and follow the marker on the monitor 

on the horizontal screen while holding a 1.5 kg weight 

with his hand on the desk. The tracking duration of each 

pattern is 24 seconds. From each subject, during each 

of these movements, a surface electromyogram signal 

of six muscles is recorded for moving elbow and shoulder 

motors (including two short and long head biceps brachii, 

two medial and lateral head triceps brachii, deltoid muscle, 

and Pectoralis major muscle) that plays the most role 

in these movements. At the beginning of each session, 

the subject practiced the movements in question. The 

purpose of the exercises was to get the person used to 
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the movements, the recording protocol, the environment, 

and the test space. To prevent muscle fatigue after each 

movement and before the next movement begins, the 

subject rests for 13 seconds. 

In this study, Biopack MP100 was used to record EMG 

signal. Six healthy male volunteers (with no history of 

musculoskeletal disorders) ranged in age from 18 to 23 

years with a height of 121 to 183 cm and a weight of 62 to 

75 kg participated in the experiments. The hand tested in 

all protocols is the right hand. To eliminate the power line 

interference, the Notch filter key of the electromyogram 

recorder was turned on. Also, the highpass filter cutoff 

frequency was set to 20 Hz and the low pass filter cutoff 

frequency was set to 500 Hz. The gain of Biopack system 

is 5000. Six channels of this device were used to record the 

signal. To reduce the impedance of the skin, it is necessary 

to prepare the skin. To cleanse the skin of fat and perfume, 

the electrode position on the muscle should be cleaned 

with alcohol-soaked cotton. Dead skin cells also have 

high electrical resistance, so they should be wiped off the 

surface of the skin using a type of abrasive such as very 

soft sandpaper. During this stage, the skin should be 

cleaned with alcohol-soaked cotton continuously. This 

step should be done carefully so as not to damage the 

skin. The qualitative criterion for skin preparation is that 

the electrode position is slightly reddened by abrasion. 

Surface hairs of skin should be removed at the location of 

the electrodes. In the recordings of this study, the surface 

hair of the skin was first shaved and the dead skin cells 

were abraded with soft abrasion number 1500, the skin 

was then cleaned with white alcohol-soaked cotton. 

SKINTACT self-adhesive disposable electrodes were 

used. Finally, the skin's electrical impedance was measured 

with a multi meter, which must be less than ten kilo ohm. 

Electrodes were positioned according to a specialist and 

(http://seniam.org/sensor_location.htm), the electrode was 

positioned at the center of the muscle mass. Figure 1 shows 

one of the subjects during the experiment. Much of the 

EMG signal power is in the frequency range of 10 to 

500 Hz. To make the signal from the samples reproducible, 

according to the Nyquist principle, the sampling frequency 

was set twice to 500 Hz [26]. 

2.2. Creating a Tracking Pattern in LabVIEW 

Software 

In this study, three types of sinusoidal, square, and 

random motions in the horizontal plane were investigated. 

To do this, a tracking pattern of three sine, square, and 

random signals on the computer are made by LabVIEW 

software. At the beginning of the program to build a 

follow-up pattern, a synchronous program was placed, for 

this purpose, by clicking the mouse, the marker and the 

patient signals are synchronized to extract features such as 

the average of delay and patient movement speed. 

Figure 2a shows the square motion. In this case, by 

moving the cursor to the right, the patient places her 

elbow on the table in the extension position, and when 

the cursor moves to the left, they place her elbow on 

the table in the flexion position. Figure 2b shows the 

sinusoidal motion. In this case, the patient puts his 

elbow on the table in extension mode by moving the 

cursor to the right in a sinusoidal position, and when 

the cursor goes to the left, they put their elbow on the 

table in flexion mode, and do it quickly. Figure 2c 

shows the random motion of the cursor. In this case, 

the patient moves his elbow on the table in the same 

direction by moving the pointer in a random position, 

and move their elbow by placing the pointer in any 

random place. First random numbers between 0 and 1 

are generated in the block and then multiplied by 500 

to increase the range of arbitrary numbers. 

2.3. Data Preprocessing 

In this study, the rectified signal amplitude peak curve 

was used to normalize the signal [27]. According to 

[28], at first, the EMG signal was rectified using 

absolute magnitude then passes through a low-pass 

filter with a cutoff frequency of 400 Hz. After deleting 

offset, signals are normalized to their maximum value. 

The purpose of applying these steps to the raw signal 

is to achieve EMG signal envelope.  

 

Figure 1. Picture of one of the subjects during the 

experiment 
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2.4. Non-Negative Matrix Factorization (NMF) 

Many real data are non-negative, and their hidden 

components have physical meaning only when they are 

negative. In practice, when components under control 

have a physical interpretation, negative analysis and 

sparsing of the data are often  desirable and necessary 

[9, 10]. The NMF problem is expressed as follows: 

If the negative data matrix 𝑌 ∈  𝑅+
𝐼×𝑇I (Y≥0) is given 

and J is the order of dimension reduction (J≤min(I,T)), 

accordingly, two non-negative matrices A= [𝑎1, 𝑎2,…, 

𝑎𝐽] ∈ 𝑅+
𝐼×𝐽

, X=𝐵𝑇 = [𝑏1, 𝑏2, … , 𝑏𝐽]𝑇 must be obtained, 

which are the factors of Y (Equation 1): 

Y=AX+E=A𝐵𝑇 + 𝐸 (1) 

That matrix 𝐸 ∈ 𝑅𝐼×𝑇 Shows the approximation error. 

Factors A and X have different physical meanings in 

different applications [8]. The standard NMF model 

assumes that matrices A and X are non-negative. Unlike 

blind resource separation methods based on Independent 

Component Analysis (ICA), the NMF method does 

not assume resource independence. The NMF problem 

can also be expressed 𝑌𝑇 ≈ 𝑋𝑇𝐴𝑇, so the concepts of 

"source" and "combination" in the NMF are often arbitrary. 

In order to estimate the matrices A and X, a similarity 

criterion must be considered to quantify the difference 

between the data matrix Y and the estimated model 

matrix (�̂� = AX). The simplest and most common similarity 

criterion used is based on Frobenius norm [8] (Equation 2):  

𝐷𝐹(𝑌||𝐴𝑋) =
1

2
 ||𝑌 − 𝐴𝑋||𝐹

2  (2) 

2.5. Recurrence Quantification Analysis (RQA) 

The primary purpose of recursive diagrams is to 

visualize the trajectory of dynamic systems in phase space, 

which is especially useful in high-dimensional systems. 

The usual patterns in recursive diagrams are related to 

specific behavior of dynamic systems, so RPs provide 

important information about the temporal evolution of 

these trajectories. 

Large-scale patterns in RP, introduced as typology, 

can be categorized into homogeneous groups, periodic, 

drift, and disrupted [10]. A closer look at the recursive 

diagrams reveals smaller-scale structures called textures, 

which are grouped into different groups. In addition to 

the visual information obtained from RP, several complexity 

metrics that quantify small-scale structures of recurrence 

diagrams are known as RQA. These criteria are based 

on the density of the recurrence points and the structures 

of the diagonal and vertical lines of the recurrence diagrams. 

Calculating these criteria in small windows (sub-matrices) 

in RP leads to time-dependent behavior of these variables 

[11]. Figure 3 shows the block diagram of research steps.  

 

Figure 2. a) Square motion of the pointer and the 

generated square signal, b) Sinusoidal motion of the 

pointer and the generated sinusoidal signal, c) Random 

motion of pointer and generated random signal 

 

Figure 3. Block diagram of research steps 
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3. Results  

3.1. Choosing the Right Number of Synergies 

Variant Allele Frequencies (VAF) was calculated 

for one to five synergies to determine the appropriate 

number of synergies in each of the sine, square, and 

random tracking hand movements. Finally, in all three 

movements considering the three synergies, the VAF 

criterion was 90% in the EMG signal envelope. 

3.2. Muscle Synergies Extraction  

After obtaining the signal envelope, muscle synergies 

were extracted using NMF algorithm. The NMF algorithm 

was run ten times with random start points to reduce the 

probability of finding local optimal ones and the response 

with the least reconstruction error was considered as 

the final answer. Three synergies were obtained for each 

subject in each movement. So there are eighteen synergies 

for each of the six subjects in each movement. At each 

movement, the eighteen synergy sets were categorized 

into three groups based on their similarity (using the 

cosine similarity criterion). The synergies of the members 

of each cluster were very similar. Clustering the synergies 

into three groups is illustrated in Figure 4.  

The last column of each shape is the center of the cluster 

(�̅�). Figure 4a shows the first, second, and third synergies 

of sinusoidal motion. The cosine similarity criterion between 

the members of the first synergy cluster is between 0.77 

and 0.98, with a mean of 0.9138 and a standard deviation 

of 0.0611. The cosine similarity criterion between the 

members of the second synergy cluster is between 0.72 

and 0.99, with a mean of 0.8953 and a standard deviation 

of 0.105. The cosine similarity criterion between the 

members of the third synergy cluster is between 0.81 and 

0.98, with a mean of 0.9214 and a standard deviation of 

0.0571. As can be seen in the sinusoidal hand motion 

tracking, the members of the synergies of each cluster are 

very similar. 

Figure 4b shows the first, second, and third synergies 

of square motion. The cosine similarity criterion between 

the members of the first synergy cluster is between 0.86 

and 0.99, with a mean of 0.94 and a standard deviation 

of 0.0399. The cosine similarity criterion between the 

members of the second synergy cluster is between 0.92 

and 0.99, with a mean of 0.97 and a standard deviation 

of 0.0245. The cosine similarity criterion between the 

members of the third synergy cluster is between 0.73 and 

0.98, with a mean of 0.87 and a standard deviation of 

0.0846. As can be seen in the square hand motion tracking, 

the members of the synergies of each cluster are very similar. 

Figure 4c shows the first, second, and third synergies of 

random motion. The cosine similarity criterion between 

the members of the first synergy cluster is between 0.61 

and 0.98, with a mean of 0.87 and a standard deviation 

of 0.1003. The cosine similarity criterion between the 

members of the second synergy cluster is between 0.50 

and 0.98, with a mean of 0.83 and a standard deviation 

of 0.1683. The cosine similarity criterion between the 

members of the third synergy cluster is between 0.59 and 

0.98, with a mean of 0.89 and a standard deviation of 

0.0984. As can be seen in the random hand motion tracking, 

the similarity of the synergy members of each cluster 

is less than the square and sinusoidal tracking movements. 

Also, as can be seen in all movements, in the first synergy, 

the activity of the short and long head biceps brachii is 

more than that of the other muscles. In the second synergy, 

the activity of the pectoralis major muscle is greater than 

 

Figure 4. Clustering the synergies into three groups  in a) 

Sine Motions b) Square Motions c) Random Motions. The 

last column of each shape is the center of the cluster (�̅�) 
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that of the other muscles. In the third synergy, the deltoid 

muscle, the lateral head, and the long head of the triceps 

brachii have the highest activity.  

3.3. Comparison of the Similarity of Synergy 

Activity Coefficients 

After clustering and analyzing the extracted synergies, 

their corresponding activation coefficients were also 

compared. In sinusoidal motion the cosine similarity of 

the members of the first cluster was between 0.24 and 0.6 

(mean: 0.42, standard deviation: 0.11), the second cluster 

between 0.15 and 0.54 (mean: 0.33, standard deviation: 

0.13), in the third cluster between 0.13 and 0.52 (mean: 

0.32, standard deviation: 0.12. Figure 5 shows mean 

Clustered Muscle Activity Curves in a) Sine Motions 

b) Square Motions c) Random Motions.  

3.4. RQA Features Extraction 

At this point, the only pre-processing of the data was 

downsampling. Then the phase space trajectory of all the 

muscles’ signal was reconstructed and RP tools were 

applied to the trajectories and the recurrence matrix was 

calculated. Then, based on this matrix, indices of the rate 

of recurrence, certainty, entropy, laminarity, etc. were 

extracted. In Table 1 the mean features extracted from the 

RQA in sinusoidal, square, and random tracking motions 

are shown.   

 

Figure 5. Mean Clustered Muscle Activity Curves in a) 

Sine Motions b) Square Motions c) Random Motions 

 
Table 1. The mean features extracted from the RQA in sinusoidal, square, and random tracking motions 

Muscle Movement Type RR DET Lmax ENT LAM TT 

Biceps (short head) 

sinusoid 0.090 0.063 12.300 0.867 0.069 3.296 

square 0.058 0.113 52.600 1.338 0.040 2.803 

random 0.091 0.127 55.500 1.319 0.071 3.378 

iceps (Long head) 

sinusoid 0.049 0.046 20.300 0.899 0.044 2.270 

square 0.029 0.096 41.500 0.927 0.006 2.089 

random 0.101 0.091 40.000 1.125 0.069 2.864 

Triceps (Long head) 

sinusoid 0.017 0.002 3.800 0.175 0.004 2.061 

square 0.019 0.040 16.600 0.570 0.003 2.552 

random 0.025 0.019 21.000 0.607 0.003 2.569 

Pect 

sinusoid 0.098 0.063 24.500 1.322 0.049 3.273 

square 0.088 0.047 24.300 1.242 0.045 3.285 

random 0.094 0.092 45.000 1.618 0.028 2.750 

Pectoralis major 

sinusoid 0.028 0.094 4.500 0.335 0.020 2.146 

square 0.093 0.169 107.500 1.344 0.087 3.449 

random 0.044 0.044 24.800 1.408 0.052 3.883 

Triceps (Long head) 

sinusoid 0.068 0.016 6.600 0.518 0.013 3.098 

square 0.053 0.035 21.300 0.778 0.025 2.629 

random 0.110 0.112 65.000 1.199 0.058 3.250 
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As can be seen in all muscles, the mean entropy value 

(ENT) of the random motions is higher than the other 

motions, indicating an increase in the complexity of the 

recurrence plot (relative to the diagonal lines) in the random 

motions relative to the other motions. The certainty value 

(DET) is always slightly lower in sinusoidal motion than 

in other movements, indicating less predictability of 

the system, although one can predict the motion to be 

performed, the body system has more chaotic behavior 

that could be due to less precision of the subjects in the 

movement. The laminarity property (LAM) is the same 

in almost all movements. The small amount of this feature 

indicates the chaotic behavior of the system. The recurrence 

plot for the first subject’s six muscles in the three sinusoidal, 

square, and random movements is shown in Figure 6. 

As can be seen, most diagrams have a pattern similar 

to the periodic pattern created by the sweep of the hand 

on the horizontal plane. The diagrams of some muscles are 

similar to the homogeneous pattern, which results in the 

behavior of the system approaching the static process.   

For better comparison, the mean values and the standard 

deviation of the cosine similarity of the first, second, 

and third synergies in all motions are given in Figure 7. 

The cosine similarity of the center of the first, second, 

and third synergy clusters between all movements is 

shown in Table 2. As the comparison of the centers of 

clusters of different movements of synergy shows that the 

mean of different people's synergies in hand movements 

on the horizontal plane is very similar. The mean and 

standard deviation values of the cosine similarity of the 

activation curves of the subjects in the three sinusoidal, 

square, and random motions in the first, second, and third 

clusters are shown in Figure 8. As can be seen, in most 

cases, the similarity of the activation curves is less 

than that of the sinusoidal and squared motions. 

4. Discussion  

In the previous methods such as [29], reinforcement 

learning has been used to control the movements of the 

muscles, and old and conventional methods have been 

obtained to control movements by the brain [29, 30] 

but in this paper, an attempt has been made to check 

that the brain has no control over single muscles and 

controls them synergistically. 
 

Figure 6. Recurrence plot in three a) random, b) 

sequential and c) square movements for a subject 

 

 
Figure 7. Mean and the standard deviation values of 

cosine similarity of the a) first, b) second, and c) third 

synergies in all motions 

Table 2. The cosine similarity of the center of the first, second, and third synergy clusters between all 

movements 

Square and 

Random movement 

Random and 

Sinusoidal movement 

Square and 

Sinusoidal movement 

Movement 

Cluster Number 

0.9965 0.9914 0.9967 First Cluster 

0.9522 0.9931 0.9732 Second Cluster 

0.9820 0.9870 0.9986 Third Cluster 
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In this paper, the aim was to understand the 

musculoskeletal system in human movements, other studies 

have been shown, the study of human movement using 

traditional methods such as reinforcement learning 

algorithms, fuzzy controllers, and the use of neural network 

controllers, but the use of synergistic theory and the fact 

that in the control brain, in such a way that the brain issues 

general motor commands and its interpretation and 

translation are done in the spinal cord, is an important 

discussion that a lot of research can be done about them. 

In this paper, the aim was to better identify the 

musculoskeletal system in human movements and with 

a synergy perspective, it has tried to interpret and analyze 

it. Its applications include rehabilitation and better 

identification of motor diseases (Parkinson's and MS) 

and their treatment.  

The recursive diagrams for the six muscles of subjects 

in the three sinusoidal, square, and random motions showed 

that most of the diagrams were similar to the pseudo-

periodic pattern created by the repetitive rotational 

movements of the hand on the horizontal plane. The 

diagrams of some muscles are similar to the homogeneous 

pattern, which results in the behavior of the system 

approaching the static process [5] noted that synergies in 

hand movements on the horizontal plane were highly 

similar among different individuals, which was also the 

result of this study. Their results also showed that although 

the synergy patterns were similar at different speeds, they 

were applied differently, which was the case in this study. 

Muscle synergies in arm reaching movements in the frontal 

plane have been extracted and studied [24]. Synergies 

of each movement were extracted using a modified NMF 

method. A synchronous model has been used. Their results 

indicated the existence of synchronous synergies in fast 

arm reaching movements, which is in accordance with the 

results of this study. The existence of synchronous synergies 

in reaching movements has also been confirmed in other 

studies, such as [3, 20]. 

In this study, muscle synergies were extracted in three 

types of sinusoidal, square, and random movements to 

compare non-random and random movements. For this 

purpose, a pattern of motion tracking was first created 

on the computer, then the EMG signal of six hand muscles 

of subjects was recorded while performing the movements. 

The NMF method, which is by far the most suitable method 

for synergy extraction, extracted time-constant synergies. 

There were three synergies per movement per person. 

Then, the synergies of each movement were divided into 

three clusters according to the degree of cosine similarity 

between individuals. Comparison of the synergies of each 

cluster using the cosine similarity criterion showed that 

the similarity of the synergies of each cluster in non-

random motions (sine and square motions) was greater 

than random motions. This comparison was also done 

for the activation curves corresponding to each synergy, 

which was the same result. It was observed, however, 

that in all movements, the similarity of the synergies in 

one cluster was greater than the similarity of their 

corresponding activation curves, which states that although 

the muscle synergies are very similar, they are not applied 

equally to different subjects. 
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