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Abstract 

Purpose: Multimodal Cardiac Image (MCI) registration is one of the evolving fields in the diagnostic methods of 

Cardiovascular Diseases (CVDs). Since the heart has nonlinear and dynamic behavior, Temporal Registration 

(TR) is the fundamental step for the spatial registration and fusion of MCIs to integrate the heart's anatomical and 

functional information into a single and more informative display. Therefore, in this study, a TR framework is 

proposed to align MCIs in the same cardiac phase. 

Materials and Methods: A manifold learning-based method is proposed for the TR of MCIs. The Euclidean 

distance among consecutive samples lying on the Locally Linear Embedding (LLE) of MCIs is computed. By 

considering cardiac volume pattern concepts from distance plots of LLEs, six cardiac phases (end-diastole, rapid-

ejection, end-systole, rapid-filling, reduced-filling, and atrial-contraction) are temporally registered. 

Results: The validation of the proposed method proceeds by collecting the data of Computed Tomography 

Coronary Angiography (CTCA) and Transthoracic Echocardiography (TTE) from ten patients in four acquisition 

views. The Correlation Coefficient (CC) between the frame number resulted from the proposed method and 

manually selected by an expert is analyzed. Results show that the average CC between two resulted frame 

numbers is about 0.82±0.08 for six cardiac phases. Moreover, the maximum Mean Absolute Error (MAE) value 

of two slice extraction methods is about 0.17 for four acquisition views. 

Conclusion: By extracting the intrinsic parameters of MCIs, and finding the relationship among them in a lower-

dimensional space, a fast, fully automatic, and user-independent framework for TR of MCIs is presented. The proposed 

method is more accurate compared to Electrocardiogram (ECG) signal labeling or time-series processing methods 

which can be helpful in different MCI fusion methods. 

Keywords: Multimodal Temporal Registration; Manifold Learning Algorithm; Locally Linear Embedding; Nonlinear 

Dimension Reduction. 
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1. Introduction  

According to World Health Organization (WHO) 

statistics, CVDs are the first cause of death worldwide [1]. 

Early detection of CVDs leads to more effective treatment 

in a shorter time. Nowadays, medical imaging plays an 

essential role in the early diagnosis of CVDs, thus reducing 

mortality rates [2]. In clinically routine, physicians may 

request for one or more imaging modalities to produce 

complementary information of anatomical and functional 

behavior of the heart to diagnose the CVDs. Recently, the 

advancements in multimodal medical image registration 

and fusion techniques gatherers complementary information 

of different modalities into a single spatio-temporal reference 

instead of comparison in a side-by-side manner [3, 4].  

The heart is a dynamic organ that changes in volume, 

and the heart's deformation occurs during the cardiac 

cycle. Important information can be extracted from the 

function of the heart in cardiac cycles [5]. Furthermore, 

TR in MCI registration is the first and essential issue to 

ensure that images are in the same cardiac phase. Several 

papers proposed MCI registration methods [6-10]. Multiple 

studies used ECG signals for time-stamping and TR of 

MCIs which depends on the level of the user’s skill. [11] 

presents a method for the fusion of aortic valve in 2D 

echocardiography and CTCA as intra-procedural guidance. 

They used ECG time-stamping method to find the temporal 

correspondence between two modalities. To eliminate 

radiation exposure in operating rooms, [12] presented 

a navigation system by registering the intraoperative 

ultrasound and preoperative Computed Tomography (CT) 

images using a magnetic tracking system. In their proposed 

method, the preoperative CT volume is synchronized with 

the real-time ultrasound imaging using ECG signals in 

the operating room. Several studies used only one cardiac 

phase for MCI registration which does not consider the 

heart's dynamic nature. [13] presents a framework for the 

registration of 3D+t cine-Magnetic Resonance Imaging 

(MRI) and a single phase of CT scan. CT scan data are 

reconstructed in 75% of the cardiac cycle in Parasternal 

Short-Axis (PSAX) view and co-registered with the 

left chambers segmented from MRI images. In [14], a 

framework for the fusion of CTCA and MRI is proposed. 

They aim to quantify the relationship between coronary 

artery stenosis and heart perfusion imperfections. The 

coronary arteries are segmented from CTCA data in 

the diastolic phase, while Cardiac MR perfusion data 

are acquired in a systolic phase; thus, several inappropriate 

registration results in the apex of the Left Ventricle (LV) 

are observed in their study. [15] presented a CTCA to MRI 

registration framework based on the myocardial surfaces. 

They used the recorded ECG signal during CTCA 

acquisition to identify the closest MRI temporal phase 

to the center of the CTCA reconstruction window. A 

couple of studies proposed Dynamic Time Warping 

(DTW) methods to synchronize MCIs which need pre-

processing on images to produce time series as the 

algorithm’s inputs. [16] proposed a method for spatio-

temporal registration of dynamic CT and cine-MRI. 

Normalized Cross-Correlation (NCC) curves of both 

modalities were aligned using an adapted DTW method. 

Another research [17] used NCC curves and their derivatives 

as the DTW inputs for TR of 3D echocardiography and 

cardiac MRI in four cardiac phases. In [18], Fourier 

decomposition of contours resulting from Speckle 

Tracking Echocardiography (STE) is used for the DTW 

algorithm. Their proposed method was used to 

spatiotemporally register CTCA and STE to achieve the 

optimal pacing in the cardiac resynchronization therapy. 

Their proposed method needs contours of cardiac chambers 

resulted from the STE or border extraction methods which 

are exhaustive due to the multiplicative speckle noise. 

As the significant impact of medical image processing 

in the diagnosis and treatment planning of CVDs, the 

amount of data is continuously increasing via medical 

imaging technologies. Each data itself is highly complex 

and requires lots of storage space and time to be processed 

[19]. The common TR method based on ECG signal labeling 

depends on the user's skill as well as spending time. 

Although this signal is available for some recorded 

data such as TTE, it is not available for CTCA images 

in offline processing. Some algorithms, such as DTW, 

also require preprocessing of two modalities involved 

in the registration and ultimately fusion to produce time 

series. TR of MCIs methods has limitations. Moreover, 

some other studies considered registration or fusion only 

in one cardiac phase. In this paper, to consider these issues 

and investigate changes in the anatomical and functional 

characteristics of heart during the cardiac cycle, an 

entirely automatic and fast method based on dimension 

reduction of data is presented. The proposed method 

aims to synchronize functional and anatomical MCIs 

using LLE method. LLE is a nonlinear unsupervised 

dimensionality reduction method [20, 21]. It represents 

a low-dimensional parameterization of data sets that 

lie on nonlinear manifolds in high-dimensional space; 

consequently, the relationship among images in a low-
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dimensional space will be expressed. In MCIs, instead 

of the apparent dimension of images, which is the size 

of the image, the images related to one patient may vary 

in a small number of parameters (e.g., noise, motions 

caused by heartbeat, and imaging geometry) [22]. In 

the proposed method, using LLE to MCIs, the structure 

within and among modalities is achieved. According 

to LLE features, similar images in the high-dimensional 

space will be neighbors in the lower-dimensional space. 

As a result, by calculating the Euclidean distance among 

points on the manifold, helpful information is obtained 

from the relationship among images in the time dimension. 

The proposed method is evaluated on TTE data as the 

functional, and CTCA as the anatomical modality recorded 

by our team from ten patients in four acquisition views. 

This paper continues as follows: TR of TTE and CTCA 

images are explained in section 2. The experimental 

results are presented in section 3. Section 4 discusses the 

proposed method and the results, and finally, conclusions 

and perspectives of this research are described in section 5. 

2. Materials and Methods  

This study aims to register MCIs in six cardiac phases 

temporally. The framework of the study is depicted in 

Figure 1. 

2.1. Data Collection 

According to Helsinki Declaration, with the study's 

approval by Regional Committee for Medical research 

ethics, TTE, and CTCA data of ten patients who were 

scheduled to undergo CTCA were acquired by our 

team from July till November, 2017. Eight of the 

enrolled patients were given Metoprolol (50-100mg) 

due to the high heart rate. According to the ethical and 

legal requirements for research involving human 

participants [23], all cases were given written informed 

consent. Furthermore, a form that was duly explained 

by the researcher and attested by a signature of the patient 

was obtained from each subject [24]. The demographic 

data of enrolled patients are indicated in Table 1. 

CTCA: CTCA data, as the anatomical reference, were 

acquired with a multi-slice CT scanner (Brilliance 64; 

Philips Medical System, Cleveland, OH). CTCA volumes 

were reconstructed every 10% of the RR-interval by 

retrospective ECG-gating (Figure 2). Thus, the CTCA 

data for each patient has nine 3D volumes consisting of 

368 to 465 slices of 512 × 512 pixels and slice thickness 

of 0.63mm.  

TTE: An expert cardiologist acquired standard Apical 

four- Chamber (A4C), Apical two- Chamber (A2C), 

Parasternal Long-Axis (PLAX), and PSAX views of 

each patient on the same day of CTCA scanning. To 

evaluate the proposed algorithm for different image 

qualities, TTE was performed using two echocardiography 

systems, IE33 (Philips medical system, USA), and Vivid7 

(General Electric, Horten, Norway) ultrasound systems. 

The images have 800 × 600 and 636 × 420 pixels, 

respectively. The acquisition frame rate was 60–80 

frame/second and covering 3-4 consecutive cardiac cycles, 

starting from the R wave. Patient heart rates during TTE 

acquisition ranged from 50 to 78 beats per minute. 

2.2. Manifold Learning Algorithm (MLA) 

Due to the increasing advancement of technology, 

processing systems are faced with large datasets which 

may contain redundant information. Feature extraction 

methods are used to extract intrinsic properties of the 

data which can express the characteristics of data in a 

more informative lower-dimension space [25]. MLAs 

are nonlinear dimensionality reduction approaches. In 

these methods, while maintaining the original structure 

 

Figure 1. The flowchart of the study 

Table 1. Demographic data of enrolled patients (n=10) 

Age 61±10 years 

Male/Female 6/4 

Dyspnea 10/10 (100%) 

Chest pain 10/10 (100%) 

Coronary Artery Bypass Grafting 3/10 (30%) 

Hypertension 7/10 (70%) 

Diabetes Mellitus 2/10 (20%) 
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of features, the correlated features which are the principal 

factor in discriminating the data from each other are 

combined [19]. Then, the whole dataset is placed on a 

manifold that expresses the actual relationship of the 

parameters. In other words, each data point is a sample 

of a smooth low-dimensional manifold embedding in 

a high-dimensional space [22]. 

Based on the nonlinear changes of heart dynamics during 

the cardiac cycle, linear dimension reduction methods 

are not responding to MCI processing. Recently, MLAs 

have begun to be applied to medical image analysis. MLA 

methods are assumed that in each N×N image, each pixel 

represents a dimension. Hence the apparent dimension 

of the image is N2 which can be a very large number. 

According to the slight differences among frames of each 

of the two modalities, instead of an apparent dimension 

of each image set, there should be a new representation 

in a lower-dimensional space using MLAs [22]. 

2.3. LLE Algorithm 

LLE algorithm, introduced by [26], is a nonlinear 

unsupervised dimension reduction method which 

preserves preserves the local structure of data [19]. In 

this method, the local property of manifold data is 

reconstructed by the nearest neighbors' linear 

composition, and a set of coefficients is obtained [19]. 

Then, in dimension reduction, an attempt is made to 

maintain these coefficients in the reconstruction [27]. 

This algorithm is implemented without measuring the 

distance or the relationship among distant points. For a 

data set called 𝑋 = {𝑥𝑖}, 𝑖 = 1…𝑁, the LLE aims to 

(Equation 1): 

𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝑅
𝐷
𝑓
→ 𝑦1, 𝑦2, … , 𝑦𝑛 ∈ 𝑅

𝑑  , 𝑑 ≪ 𝐷 (1) 

Where 𝑓 is a mapping function to reconstruct 𝑋 in 𝐷 

dimensional space to a new data set 𝑌 = {𝑦𝑖}, 𝑖 = 1…𝑁 

in 𝑑 dimensional space. LLE algorithm is summarized 

as follows: 

1- K-nearest neighbor of each data on data set 𝑋 is 

calculated using Euclidean distance.  

2- For each connected pair of nodes (𝑥𝑖 , 𝑥𝑗), compute 

weights 𝑤𝑖𝑗 by minimizing 𝐸(𝑊) function (Equation 2): 

𝐸(𝑊) =∑ ‖�⃗�𝑖 −∑ 𝑤𝑖𝑗�⃗�𝑗
𝑘

𝑗=1
‖

2𝑁

𝑖=1
 (2) 

Subject to  ∑ 𝑤𝑖𝑗 = 1
𝑘
𝑗=1  

Such that 𝑤𝑖𝑗 = 0 if 𝑥𝑖 and 𝑥𝑗 are not neighbors. By 

considering a specific data 𝑥 with its 𝑘 nearest neighbors 

𝜂𝑗 and reconstruction weights 𝑤𝑗, Equation 2 can be 

rewritten as Equation 3: 

𝜀 = |�⃗� − ∑ 𝑤𝑗�⃗�𝑗𝑗 |
2
= |∑ 𝑤𝑗𝑗 �⃗� − ∑ 𝑤𝑗�⃗�𝑗𝑗 |

2
=

  |∑ 𝑤𝑗(�⃗� − �⃗�𝑗)𝑗 |
2
, 𝑤𝑖𝑡ℎ |𝑧|2 = 𝑧𝑇 . 𝑧 =

[∑ 𝑤𝑗(�⃗� − �⃗�𝑗)𝑗 ]
𝑇

⏟          
=𝑧𝑇

. [∑ 𝑤𝑘(�⃗� − �⃗�𝑘)𝑘 ]⏟          
=𝑧

= ∑ 𝑤𝑗(�⃗� −𝑗

�⃗�𝑗)
𝑇
. ∑ 𝑤𝑘(�⃗� − �⃗�𝑘)𝑘 = ∑ ∑ 𝑤𝑗𝑘𝑗 (�⃗� − �⃗�𝑗). 𝑤𝑘(�⃗� −

�⃗�𝑘) = ∑ ∑ 𝑤𝑗𝑘𝑗 𝑤𝑘(�⃗� − �⃗�𝑗). (�⃗� − �⃗�𝑘) = ∑ 𝑤𝑗𝑤𝑘𝐺𝑗𝑘𝑗𝑘   

 (3) 

𝐺𝑗𝑘 is called the Gram matrix which is symmetric 

and semipositive definite (Equation 4), 

𝐺𝑗𝑘 = (�⃗� − �⃗�𝑗). (�⃗� − �⃗�𝑘) (4) 

Using a Lagrange multiplier to enforce the ∑ 𝑤𝑗𝑗 = 1 

constraint, the reconstruction error can be minimized. 

The optimal weights are given by Equation 5: 

𝑤𝑗 =
∑ 𝐺𝑗𝑘

−1𝐾
𝑘=1

∑ ∑ 𝐺𝑙𝑚
−1𝐾

𝑚=1
𝐾
𝑙=1

 (5) 

In cases where the matrix is singular or nearly singular, 

it should be regularized by Equation 6: 

{
 
 

 
 𝐺𝑗𝑘 ← 𝐺𝑗𝑘 + 𝛿𝑗𝑘 (

∆2

𝐾
)𝑇𝑟(𝐺)

𝛿𝑗𝑘 = 1                             if   𝑗 = 𝑘

𝛿𝑗𝑘 = 0                        otherwise

 (6) 

Where 𝑇𝑟(𝐺) is the trace of the Gram matrix and 

∆2≪ 1 [27]. 

3- Finally, 𝑥𝑖 in 𝐷 dimensional space is mapped to 

𝑦𝑖 in 𝑑 dimensional space. Because data are on or near a 

𝑑 dimensional manifold, a linear function consisting 

of translation, rotation, and scaling is considered that 

maps high-dimensional space to the intrinsic dimensional 

manifold. In this mapping, the 𝑤𝑖𝑗  coefficients are designed 

so that the geometric properties of the data to these linear 

transformations remain constant. Hence, the reconstruction 

coefficients in 𝐷 should reconstruct the data in the 𝑑 

 

Figure 2. Schematic of retrospective ECG-gating 

reconstruction of CTCA data in every 10% of the RR-interval 
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dimensional space by minimizing the following function 

with respect to 𝑦𝑖 (Equation 7): 

𝜑(𝑦) =∑ |�⃗�𝑖 −∑ 𝑤𝑖𝑗�⃗�𝑗
𝑘

𝑗=1
|

2𝑁

𝑖=1
 (7) 

This function, as the function in (2) tries to minimize 

the reconstruction error with the difference that, in (2), 

𝑦𝑖’s are reconstructed only by 𝑤𝑖𝑗 coefficients. The 

dimensionality reduction is made by preserving the 

geometric information obtained from the coefficients. For 

solving this problem, Eigen value-vector analysis is used: 

𝜑(𝑌) =  ∑ |�⃗⃗�𝑖 − ∑ 𝑤𝑖𝑗 �⃗⃗�𝑗𝑗 |
2

𝑖 = ∑( �⃗⃗�𝑖 − ∑ 𝑤𝑖𝑗 �⃗⃗�𝑗)(�⃗⃗�𝑗 −𝑗

 ∑ 𝑤𝑖𝑗 �⃗⃗�𝑖) =  ∑ 𝑀𝑖𝑗(𝑖𝑗𝑖 �⃗⃗�𝑖 �⃗⃗�𝑗) 

 (8) 

Where 𝑀𝑖𝑗 = 𝛿𝑖𝑗 − 𝑤𝑖𝑗 − 𝑤𝑖𝑗 + ∑ 𝑤𝑘𝑖𝑤𝑘𝑗𝑘 . The 

embedding 𝐘 is then given by the eigenvectors 𝑢0, … , 𝑢𝑑 

of 𝑀 with associated eigenvalues (𝜆0 ≤ ⋯ ≤ 𝜆𝑑) [26, 28]. 

2.4. LLE in MCI Processing  

The cardiac cycle consists of seven phases. The 

characteristics of each phase are tabulated in Table 2 [29]. 

As presented in Table 2, since all valves are closed during 

isovolumetric contraction and relaxation phases, there 

are no noticeable changes in the cardiac volume. Moreover, 

in the reduced filling phase, due to the small amount of 

blood entering the ventricles, there are small changes in 

the volume of the ventricles. Thus, in a cardiac cycle, there 

are three phases (second, fifth, and seventh) in which the 

volume of the ventricles is almost nearly constant. As 

a result, the MCIs of the frames associated with these 

phases are very similar. Besides, there are three phases 

(first, third, and sixth) where volume change occurs 

significantly. It is expected that by dimension reduction 

of MCIs using the LLE algorithm, the frames corresponding 

to the second, fifth, and seventh cardiac phases stay close 

to their neighboring images. The distance among the frames 

corresponding to the first, third, and sixth cardiac phases 

and their neighbors is more than other cardiac phases when 

mapping from high-dimensional to low-dimensional space. 

3. Results  

The proposed method is applied to ten collected 

TTE and CTCA data. Each frame of each TTE is a 

grayscale image of 800 × 600 and 636 × 420 pixels, so 

each frame's apparent dimensions (D) are 480000 and 

267120, respectively. Moreover, each frame of each 

CTCA set is a grayscale image of 512 × 512 pixels, so 

the apparent dimension of each frame (D) is 262144. 

Although the apparent dimension of each TTE and CTCA 

image set is a large number, they differ in a limited number 

of parameters (deformation and alternating volume of the 

heart due to heart rate) that the LLE algorithm can extract. 

Figure 3 shows the LLE embedding of TTE and CTCA 

images in a cardiac cycle for A4C, A2C, PSAX, and PLAX 

cardiac views. A set of the images of four cardiac acquisition 

views in a cardiac cycle of TTE and CTCA are embedded 

in two-dimensional space using the LLE algorithm. As 

shown in Figure 3, due to the different structure and 

nonlinear dynamics of the heart, similar manifolds are 

not obtained in different views of the two modalities. 

Table 2. Description of seven phases of the cardiac cycle 

Cardiac phase 
Description 

Number Name 

1 Atrial Contraction 
- Depolarization of the atria 

- The blood inside the atria is pumped out into the ventricles 

2 
Isovolumetric 

Contraction 

-Starts with: Closure of the mitral and tricuspid valves 

-Ends with: Opening of the aortic and pulmonary valves 

-The ventricular pressure suddenly increases due to its contraction 

without any changes in its volume 

3 Rapid Ejection 
Rapid and primary drainage of blood (70%) to the aortic, and 

pulmonary arteries from the left and right ventricles 

4 Reduced Ejection The rest of the blood (30%) in ventricles discharges 

5 
Isovolumetric 

Relaxation 

-Starts with: Closure of the aortic and pulmonary valves 

-Ends with: Opening of the mitral and tricuspid valves 

-The ventricular pressure decreases without any changes in its volume 

6 Rapid Filling The rapid flow of the blood from the atria to the ventricles 

7 Reduced Filling 
-Ventricles are at the end of the filling phase 

-No noticeable changes in the volume of the ventricles occur 
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Regarding the periodic nature of the heart’s motion, all 

resulted manifolds are nearly closed curves. Moreover, 

there are no perceptible volume changes in the cardiac cycle 

in three end-diastole, rapid-ejection, and end-systole cardiac 

phased. Thus, there are three regions with a high density 

of points on each manifold which means they are similar 

in the first space (𝐷). Due to the rapid filling of ventricles 

between end-systole and reduced-filling and the rapid 

ejection of them between end-systole and end-diastole, a 

dominant ventricular volume change occurs, resulting 

in three sparser regions on manifolds. According to the results 

of applying the LLE method to both modalities' image sets, 

six areas with prominent features are achieved. To quantify 

the resulted manifolds, the Euclidean distance among 

consecutive points on the manifolds (called the Neighbor 

Distance Plot (NDP) in this paper) is calculated. Figure 4 

shows NDPs of LLE embedding of TTE and CTCA images. 

As resulted, in NDP of both modalities, three points with the 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. LLE embedding of TTE frames (left column) and CTCA slices (right column) in a cardiac cycle for a) A4C, 

b) A2C, c) PLAX, and d) PSAX views. Red points and arrows indicate the isovolumetric cardiac phases. The green 

points and arrows correspond to rapid ventricular volume change between each of the isovolumetric cardiac phases 
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shortest distance and three points with the most considerable 

distances are identified. An important issue to determine 

landmarks on the NDP of TTE sets is that, since TTE data 

are started from the R wave and in contrast, the NDP of 

CTCA starts from the 10% of RR interval, the first and 

the last points of TTE’s NDP are not considered as the 

target landmarks. As expected and depicted in Figure 4, 

due to the presence of three dense regions on the 

manifolds, whose distances are very close, three minima 

are observed in the NDPs corresponding to end-diastole, 

rapid-ejection, and end-systole cardiac phases. Also, 

because of the considerable volume changes in the rapid-

ejection, rapid-filling, and atrial-contraction cardiac 

phases, three sparser regions are leading to three maxima 

on the NDPs. Thus, in both TTE and CTCA modalities, 

six cardiac phases are extracted and temporally aligned. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. NDP of LLE embedding in Figure 3 for TTE frames (left column) and CTCA slices (right column) in a cardiac cycle 

for a) A4C, b) A2C, c) PLAX, and d) PSAX views. Red points and arrows indicate the isovolumetric cardiac phases. The green 

points and arrows correspond to rapid ventricular volume change between each of the isovolumetric cardiac phases 
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The evaluation of the proposed method has proceeded in 

two steps. First, the Correlation Coefficient (CC) among 

manual frame selections by an expert cardiologist as the 

Ground Truth (GT) and resulting frames from the proposed 

method. Suppose that 𝑋 and 𝑌 are sets of frame numbers 

of GT and from the proposed method, with the mean values 

of 𝜇𝑋 and 𝜇𝑌, respectively, then, the CC is calculated as: 

𝐶𝑜𝑟𝑟(𝑋, 𝑌)  =
𝔼[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)]

𝜎𝑋𝜎𝑌
 (9) 

Where 𝜎𝑋 and 𝜎𝑌 are the standard deviations of X and 

Y, respectively, and 𝔼 is the mathematical expectation. 

Second, to investigate the effect of selected slice from 

CTCA volume in the proposed method, the Mean Absolute 

Error (MAE) among resulting frames from  the proposed 

method and the GT is computed in two following conditions: 

-Reconstruction of CTCA axial slices into cardiac 

standard views.  

-Using Generalized Pattern Search (GPS) algorithm for 

Slice-to-Volume (S/V) registration [11]. 

MAE formulation is defined as below: 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑥𝑖 − 𝑦𝑖|

𝑁

𝑖=1

 (10) 

Where 𝑁 is the number of samples of 𝑋 and 𝑌. 

The validation steps are performed on A4C, A2C, 

PSAX, and PLAX views. Figure 5 shows CC results 

between the proposed method and GT. As illustrated in 

Figure 5, the means (±SD) of CC for A4C, A2C, PLAX, 

and PSAX views are 0.89 (±0.07), 0.89 (±0.07), 0.82 

(±0.06), and 0.68 (±0.04), respectively. As can be 

inferred from the results, PSAX view has the lowest CC 

values. The main cause is that, since the acquired PSAX is 

in the mitral valve level, the field of view in this class of 

images is very limited. Therefore, exploring the cardiac 

cycle without the presence of cardiac chambers is limited. 

Exploring the results in different cardiac phases shows that 

the mean (±SD) of CC values for end-diastole, rapid-

filling, end-systole, rapid-filling, reduced-filling, and atrial-

contraction are 0.71(±0.05), 0.84(±0.1), 0.82(±0.11), 

0.79(±0.07), 0.85 (±0.1), and 0.9 (±0.09), respectively. 

Figure 6 shows the evaluation results due to MAE for four 

standard acquisition views in six cardiac phases. 

 
Figure 5. Computation of CC between the proposed method 

and the GT for six cardiac phases and four standard views 
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Figure 6. MAE between frame numbers extracted from the proposed method (using two two-slice extraction methods) 

and from the GT for a) A4C, b) A2C, c) PLAX, and d) PSAX views 
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As displayed in Figure 6, using both slice extraction 

methods, The MAE of the resulting frame numbers from 

the proposed method and GT is insignificant. Hence, 

Figure 6 demonstrates the difference between the mean 

MAE of using approximate reconstruction or using GPS 

for the S/V registration method for six cardiac phases 

in four cardiac views.  

As shown in Table 3, the error between the mean MAE 

values of two slice extraction methods in the proposed 

method are 0.01, 0.08, 0.16, and 0.17 for A2C, A4C, 

PLAX, and PSAX views, respectively. Thus, the proposed 

method seems robust to any spatial multimodal registration 

method. 

Figure 7 exhibits the resulted TTE frames in four 

acquisition views and their corresponding percentage of 

RR interval in CTCA volumes for six cardiac phases. The 

average running time for TR of CCTA and TTE using 

an Intel(R) Core (TM) i7-6700HQ CPU @ 2.60 GHz, 

2592 MHz, 4 Core(s), and 8 Logical Processor(s) laptop 

are about 2.67±0.04, and 1.64±0.03 seconds, respectively.  

4. Discussion 

An independent of user interaction and experience TR 

method without the need to preprocess MCIs based on 

the LLE algorithm is proposed. The proposed method 

uses only the information of images and their relations 

in a cardiac cycle. The LLE algorithm's main feature 

is maintaining local and similar points when mapping 

from high-dimensional to low-dimensional space. 

To evaluate the proposed method, images related to 

CTCA and TTE modalities were recorded from ten 

patients who were referred to CTCA imaging by their 

physician. Using LLE to image sets of both modalities, 

the relationship among frames in high-dimensional 

space is well preserved, and valuable information is 

extracted from the manifold of images for TR between 

two modalities.  

As it can be seen from the resulted LLE manifolds, 

due to the periodic nature of the cardiac cycle, the LLE 

manifolds of both modalities are close (for TTE) or 

nearly close (CTCA) curves. The reason for the expression 

of ‘nearly close’ is that CTCA data are constructed in 

every 10% of the RR interval. Thus, only nine cardiac 

phases of CTCA data are available for each patient. 

By calculating the NDP of both modalities, the changes 

in LV volume are evident. Since the LV volume does not 

change significantly in isovolumetric cardiac phases, 

the corresponding frames in the high-dimensional space 

do not alter considerably. As a consequence, three minima 

correspond to end-diastole, end-systole, and reduced-

filling cardiac phases in the NDP of both modalities. 

In contrast, LV volume changes significantly between each 

of the three aforementioned isovolumetric cardiac phases: 

rapid-ejection, rapid-filling, and atrial-contraction cardiac 

phases. Therefore, NDP contains three maxima according 

to these phases, and functional and anatomical features 

of the heart can be assessed in a cardiac cycle instead 

of considering only one cardiac phase in temporal 

registration followed by a fusion [14, 30, 31]. The mean 

CC of 0.81 for six cardiac phases and four acquisition 

views among the results of the proposed method and 

from frame number assignment by an expert shows the 

effectiveness of the proposed method. Furthermore, CC 

results show that, compared to the previously published 

articles for MCI registration, the proposed method can 

be used as an alternative to user-dependent ECG-labelling 

Table 3. Comparison between two slice extraction methods in the proposed method 

 

A2C A4C PLAX PSAX 

Recon. in to 

standard 

acquisition 

views 

Using GPS 

method 

Recon. in to 

standard 

acquisition 

views 

Using GPS 

method 

Recon. in to 

standard 

acquisition 

views 

Using GPS 

method 

Recon. in to 

standard 

acquisition 

views 

Using GPS 

method 

End Diastole 1.20 (±0.01) 1.33 (±0.02) 2.33 (±0.01) 1.88 (±0.02) 1.55 (±0.26) 2.11 (±0.24) 2.63 (±0.35) 2.34 (±0.31) 

Rapid Ejection 1.65 (±0.03) 1.50 (±0.01) 1.84 (±0.12) 2 (±0.03) 1.23 (±0.03) 1.44 (±0.06) 3.28 (±0.54) 3.78 (±0.51) 

End Systole 1.26 (±0.01) 1.19 (±0.02) 1.56 (±0.06) 1.19 (±0.10) 1.84 (±0.19) 2.12 (±0.13) 2.64 (±0.62) 2.71 (±0.64) 

Rapid Filling 1.53 (±0.03) 1.47 (±0.04) 2.53 (±0.24) 1.74 (±0.07) 1.34 (±0.15) 1.19 (±0.01) 1.24 (±0.52) 2.27 (±0.55) 

Reduced Filling 1.34 (±0.05) 1.76 (±0.03) 1.34 (±0.12) 1.75 (±0.10) 1.80 (±0.12) 1.74 (±0.21) 3.31 (±0.42) 2.95 (±0.31) 

Atrial 

Contraction 
2.12 (±0.06) 1.89 (±0.03) 1.84 (±0.17) 1.49 (±0.06) 1.84 (±0.16) 2.01 (±0.22) 1.76 (±0.71) 1.81 (±0.63) 

Mean (±SD) 1.51 (±0.31) 1.52 (±0.23) 1.590(±0.41) 1.67 (±0.26) 1.60 (±0.24) 1.76 (±0.35) 2.47 (±0.75) 2.64 (±0.62) 

 



 T. Ghodsizad, et al. 

FBT, Vol. 8, No. 4 (2021) 292-303 301   

methods [32]. Although most echocardiography systems 

include ECG recording and can be assessed during diagnosis 

in real-time capturing or even offline analysis, in CTCA 

modality, ECG data are not available in offline processing. 

Another aspect of the ability of the proposed method versus 

other related works in TR is that it uses the information 

of the image sequence in the cardiac cycle and does not 

need to determine the initial condition for optimizing or 

pre-processing the images of both modalities to produce 

time series. Transcatheter aortic valve replacement and 

implantation are preferred minimally invasive procedures 

to treat aortic valve stenosis. PSAX view is used as a guide 

in such procedures which is a contributor to image fusion 

in these procedures. According to the expert’s expression, 

accurate diagnosis of cardiac phases in the PSAX view 

is more difficult than other standard views. Thus, the 

proposed method can be a better solution for surgeon-

based TR. 

To investigate the robustness of the proposed method 

along with different spatial registration and fusion methods, 

the results obtained from this research are compared 

to using an S/V registration method [11]. The error of 

mean MAE between two slice extraction methods for 

six cardiac phases of A2C, A4C, PLAX, and PSAX 

views is less than 0.17. Hence, the proposed method 

can be used in conjunction with many spatial registration 

and fusion methods. PSAX view has less field of view 

than the other standard heart views. As a result, accessing 

this view is associated with more errors in both reconstruction 

and using GPS methods. Furthermore, the algorithm 

can utterly automatically synchronize MCIs. Unlike 

recent studies [16-18, 33], there is no need for the pre-

processing of modalities in the algorithm. Consequently, 

it is fast, and easy to implement. Indeed, in the proposed 

method, since the local structure of the data is preserved 

when mapping from high-dimensional to low-dimensional 

space, it can be used in the TR of all MCIs obtained during 

the cardiac cycle. 
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Figure 7. Resulted in TTE frames in a) A4C, b) A2C, c) PLAX and d) PSAX views. The corresponding CTCA volume 

due to the percentage of RR interval is stated below each frame for six cardiac phases 

 



Temporal Registration of Cardiac Multimodal Images Using Locally Linear Embedding Algorithm  

302  FBT, Vol. 8, No. 4 (2021) 292-303 

5. Conclusion 

A TR method of MCIs based on the LLE algorithm 

is presented. Compared to the major studies on TR of 

MCIs and based on the results and agreements to visual 

assessment by an expert, it can be robustly and efficiently 

done without using ECG signal and without any pre-

processing or primary condition selection needed for both 

types of anatomical and functional cardiac image modalities. 

Besides, this study also makes it possible to consider 

changes in the heart and the coronary arteries compared 

to studies that have performed image fusion in only one 

cardiac phase. The proposed method can be improved 

by increasing the reconstructed images of CTCA in the 

time domain which means decreasing the distances of 

reconstruction points in the R-R interval to achieve 

dynamic synchronization of MCIs with more frames. 

According to the high proceeding speed of the algorithm, 

it can be used in real-time fusion methods in minimally 

invasive procedures. Also, it can be used in other cardiac 

modalities such as Cardiac Magnetic Resonance Imaging 

or 3D echocardiography. 
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