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Abstract 

Purpose: Glioblastoma Multiform (GBM) is one of the most common and deadly malignant brain tumors. Surgery 

is the primary treatment, and careful surgery can minimize recurrence odds. Magnetic Resonance Imaging (MRI) 

imaging with Magnetic Resonance Spectroscopy (MRS) is used to diagnose various types of tumors in the Central 

Nervous System (CNS). In this study, several classification methods were used to separate tumor and healthy 

tissue. 

Materials and Methods: This study examined the MRI and MRS results of seven people enrolled in this study in 

2018. The data was obtained with a prescription from a neurologist and neurosurgeon. Choline (Cho) and N-

Acetylaspartate (NAA) metabolite signals were selected as the reference signal after preprocessing and removing 

the water signal. With the support of 3 radiologists, each tumor and healthy vesicles were identified for every 

patient. Then, tumor and healthy voxels were separated based on Multilayer Perceptron (MLP), linear Support 

Vector Machine (SVM), Gaussian SVM, and Fuzzy system using the obtained values and four different methods. 

Results: Data extracted from Cho and NAA metabolites were fed into MLP, linear SVM, Gaussian and Fuzzy 

SVM as input, and the amounts of accuracy, sensitivity, and specificity were determined for each method. The 

maximum accuracy for training mode and test mode was equal to 89.7% and 87%, respectively, specific to 

classification using Gaussian SVM. The results also showed that the classification accuracy can be significantly 

increased by increasing the number of fuzzy membership functions from 2 to 6. 

Conclusion: The results of this study suggested that a more complex classification system, such as SVM with a 

Gaussian kernel and fuzzy system can be more efficient and reliable when it comes to separating tumor tissue from 

healthy tissues from MRS data. 
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1. Introduction  

The World Health Organization (WHO) refers to a 

fourth-degree brain glioma as a glioblastoma, which is a 

type of brain cancer that accounts for approximately 75% 

of high-grade brain tumors [1]. This form of glioma is 

called GBM because it can take several different 

morphological forms. GBM is the most common and 

deadly primary malignant brain tumor, with an incidence 

of 3.2 cases per 100,000 population per year [2, 3]. The 

average lifespan of patients with this deadly tumor is 

15-18 months [4]. To date, glioblastoma remains 

incurable despite advances in imaging, chemotherapy, and 

radiation therapy. The initial treatment for GBM is surgery, 

and the more accurate the surgical procedure, the better 

chance of survival and the lower the chance of tumor 

recurrence [5, 6]. Because GBM tissue is very similar to brain 

tissue [7], imaging techniques can assess the tumor more 

effectively between healthy and tumor waxes. Emerging 

non-invasive imaging techniques provide information on 

tissue properties, structure, and metabolic processes [8]. 

MRI shows morphological and anatomical features 

of the disease. Therefore, MRI is frequently used in 

the diagnosis and follow-up treatment of glioblastoma 

tumors [9]. MRS is also a non-invasive method that 

allows the identification and measurement of tissue 

metabolites. In some cases, a combination of 

conventional MRI and MRS is often used to diagnose 

and monitor various diseases, including neurological 

disorders, especially in the CNS, such as stroke, brain 

tumors, and mental disorders [10]. 

Anatomical imaging does not differentiate between tumor 

progression, radiation necrosis, and edema; therefore, 

conventional MRI images cannot be used for this purpose 

[11]. Because there are differences in a tumor's metabolic 

structure, radiation necrosis, and edema, MRS imaging is 

used to diagnose these areas [11]. 

Different metabolites are found in different tissues, 

and the levels of these metabolites can fluctuate based on 

diseases. Essentially, metabolic changes are indicators 

of disease onset and improvement. This is mainly because 

metabolic changes become evident earlier than anatomical 

changes. Furthermore, as previously mentioned, brain 

tissue's biochemical profile can be measured by (MRI) 

using MRS [12]. MRS data is received as frequency spectra 

from the device. The received FID signal must be analyzed 

to determine the concentration of each metabolite. 

FID analysis is done with different software. TARQUIN 

is one of the most commonly used software for this 

purpose. TARQUIN uses a base set to calculate the 

concentration of metabolites, and the base set used in 

TARQUIN is obtained from the simulation of quantum 

mechanics using predetermined parameters [13-17]. 

The concentration of each metabolite is calculated in the 

frequency spectrum with the level below the corresponding 

peak diagram [18]. MRS performs both single-voxel and 

multi-voxel spectroscopy. In the latter method, an arbitrary 

number of voxels is used for networking the specified 

range. Every networked part has its own spectrum. After 

the spectral analysis, the concentration of metabolites 

in each voxel is calculated. Some concentrations and 

ratios of metabolites can help determine whether voxels 

are healthy or tumorous. Artificial Intelligence (AI) and 

machine learning are currently being used to diagnose 

and predict disease [19]. Previous studies have suggested 

several techniques for differentiating brain tumors. 

However, in this study, four neural networks were used 

for the first time in the automatic diagnosis of tumors 

and healthy areas in glioblastoma based on MRS data. 

So the aim of this study is to make reliable discrimination 

between normal and tumor tissue, which normal tissue 

may contain edema.  

Because there may be errors during a visual examination, 

especially if a tumor appears at the border, in this study, 

several automatic methods that differentiate tumor from 

non-tumor areas through neural networks were proposed to 

compare their results. Then, the strengths and weaknesses 

of each method are examined to determine most effective 

one. 

2. Materials and Methods  

2.1. Data Acquisition 

The statistical population includes seven individuals 

(four males and three females) with a mean age of 47±25 

who had been diagnosed with multiform glioblastoma 

tumor (inclusion criteria). These patients were referred 

to Imam Khomeini Hospital in Tehran for MRI imaging 

and MRS analysis by a neurologist and a neurosurgeon 

in 2017. In this study multi-voxels data has been used, 

in other words, the learning vector contains voxels of tumor 

and normal tissue. The overall number of learning vector 

is 293, which contains voxels of tumor and normal tissue. 

Prior to performing the test (obtaining data), the research 



 A. Faramarzi, et al.  

FBT, Vol. 8, No. 3 (2021) 183-190 185 

process was fully explained to all patients, and they signed 

the consent form after they approved it. 

In this study, the Siemens MAGNETOM Trio Tim 

3T scanner was used. A large number of spectra (MRS 

data) are necessary to determine the extent of the tumor; 

therefore, all data were acquired using Chemical Shift 

Imaging (CSI). The CSI method also allows for the 

examination of focal and close points. This is extremely 

important for differentiating between tumor and non-

tumor areas [20]. The parameters used in this study were 

MRI images with TE=83ms, TR=6000ms, ST=5/5ms, 

Inversion Time=2500 ms, Flip Angle=120, samples per 

pixel=1, Pixel Bandwidth=119 and measurement 

parameters for MRS data are TE=135ms and TR=1570ms, 

respectively. Imaging was performed using the PRESS 

method. The signal-to-noise ratio is shorter at short TE 

than at high TE; however, these data were collected using 

long TE because the spectrum shows more metabolites 

at short TE than at long TE, which causes more errors 

in the calculation. In addition, in long TE, water and 

fat signals have less destructive effects on the spectrum 

obtained. At higher TEs, the spectrum of metabolites is 

more distinct, and images obtained after contrast injection 

were used to select the VOI site for MRSI. 

All tumor and healthy vascular cells were identified for 

each patient by three radiologists of Imam Reza Hospital, 

with the assistant professor's scientific rank from 

Kermanshah University of Medical Sciences. The standard 

was the maximum opinion of radiologists. The criteria 

for the determination of tumor and normal tissue voxels 

by radiologists were conventional MRI. 

2.2. Preprocessing 

First, the number of voxels in each dataset was 

determined by using Sivic software. Figure 1 shows that 

each MRI image has a specific region where a network of 

voxels is placed. Figure 1 shows that the region of studding 

tissue is limited to the normal and tumor voxels, which 

reduces the effect of diversity in brain metabolite. 

The data was loaded into Tarquin at this point. The 

water signal is much larger than that of other metabolites; 

therefore, despite the presence of water in the FID, the 

software cannot accurately detect the other metabolites 

(Figure 2). Hence, water suppression should be performed 

first using Tarquin. 

According to the convention, the horizontal axis is 

numbered from right to left [21]. Likewise, the fat effects 

should be removed from the FID. In Tarquin, water 

suppression is accomplished by HSVD [22]. The effect 

of this signal was removed to allow for further analysis of 

metabolite concentrations. When the water is suppressed as 

well as the fat is removed, the signal of other metabolites 

becomes available for analysis (Figure 3).  

 

Figure 1. The yellow box indicates the region to be 

photographed, and the green grid indicates the number 

of voxels as well as the exact location of each voxel. 

While paying attention to the specific locations of each 

voxel, the radiologist comments on the tumor or the 

health of that voxel 

 

Figure 2. The FID signal is taken from the time domain 

to the frequency domain using Fourier transform. The 

signal is located at a 4.65 ppm water signal 

 

Figure 3. Here, the signals of the metabolites are more 

clearly visible than before the water suppression operation. 

NAA metabolites at 2.01 and Cho at 3.02 
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At this stage, Cho and NAA metabolites were chosen 

as reference signals (Figure 4). The concentration of each 

metabolite is obtained by choosing a reference for that 

metabolite. The concentration of each metabolite is 

proportional to its FID range (Figure 5).  

After calculating NAA and Cho's concentration, the 

values were considered as the input for neural networks. 

In this study, four methods were used to determine 

healthy tumor voxel: MLP, linear SVM, nonlinear SVM, 

and Fuzzy. Additionally, Perceptron is also a machine 

learning algorithm that falls under the category of 

supervised learning. The Perceptron algorithm works as a 

linear binary classification algorithm, meaning its 

predictions are calculated by looking at the weighted 

linear combination of the inputs [23]. 

Support vector machine is a supervised machine 

learning algorithm widely used in classifying problems. 

The backup vector machine algorithm identifies each data 

sample as a point in the n-dimensional space based on 

each property's value, one of the components of a point 

coordinate on the graph [24]. The fuzzy inference system 

transforms a knowledge base by means of a systematic 

process into a nonlinear mapping, thus making it useful in 

engineering applications, especially in decision-making 

[25]. 

2.3. Classification Methods 

For classifying tumor and normal voxels, four 

methods were used, containing MLP, linear SVM, 

nonlinear SVM, and Fuzzy. In this section, these 

methods briefly will be introduced. As mentioned above, 

there are two inputs for all these methods. These inputs 

contain a concentration of Cho and NAA.  

As the first method, MLP has been chosen for 

classifying the voxels. This method is well suited to the 

classification of sets of input vectors into a set of 

corresponding output vectors. This neural network 

contains three layers: an input layer, hidden layer, and 

output layer . In this study, the input layer contains a 

concentration of Cho and NAA, and the hidden layer 

contains two or more neurons. The number of neurons 

depends on the context and the learning base. Finally, 

the output layer must show the best classification 

between normal and tumor voxels. 

 

Figure 4. The representation of the NAA signal, which was used to determine where to fit the received signal 

 

Figure 5. The red signal curve represents the model, and the green signal curve represents the phantom of the 

metabolite. Tarquin obtains each metabolite's concentration by calculating the area below the diagram of the regions 

associated with each metabolite 
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SVM is a supervised machine learning algorithm that 

can be used for both classification or regression challenges 

but it is mostly used for classification. In SVM problems, 

an n-dimension space will be used, where “n” is the number 

of input features and classification will be performed 

by finding the hyper-plane that makes the best differentiation 

between the two classes.  

The fuzzy system typically contains a set of rules which 

demonstrates the relation between the input feature space 

and classes. In the fuzzy systems, the feature space is 

partitioned into multiple fuzzy subspaces by fuzzy if-then 

rules. These fuzzy rules can be represented by a network 

structure. 

In this study fuzzy system is a multilayer feed-forward 

network consisting of the following layers: input, fuzzy 

membership, fuzzification, defuzzification, normalization, 

and output. The classifier has multiple inputs and multiple 

outputs. 

3. Results 

To extract the results, Tarquin was used for pre-processing 

and processing, while MATLAB was used for the final 

processing. Figure 6 shows the distribution of voxels. 

Red spots are healthy, and green spots are tumor patches. 

The data in Figure 6 were used as input to neural 

networks, of which a certain number was used for training 

neural networks and some for testing neural networks.  

Based on this selection, NAA and Cho were evaluated 

according to automatic diagnosis in the classification of 

voxels into two categories of tumors and healthy based 

on the function of SVM, MLP, Fuzzy with linear kernel, 

SVM with Gaussian kernel, and neural network (Table 

1). 

First, to determine the number of membership functions, 

the accuracy values of training and test data for neural 

networks with different numbers of membership functions 

were examined. Table 2 shows the accuracy values of 

training and test data. 

4. Discussion 

Tarquin was used in this study to remove the effects 

of water as well as macromolecules in MRS data. The 

reference spectra were then selected for fitting. MRS data 

with TE =135 ms included concentrations of several 

metabolites, the values of which can be measured with high 

accuracy after Tarquin analysis. In this study, corresponding 

with several studies' results, the concentrations of NAA 

and Cho metabolites, which have been used to differentiate 

between tumors and healthy vesicles, were used to train 

and test neural networks [27-30]. 

In this study, NAA and Cho metabolite concentrations 

were calculated and fed as input to neural networks. 

According to previous studies, the reason for using the 

concentrations of these metabolites was that they made a 

 

Figure 6. The distribution of healthy and tumor 

voxels. Red dots mark healthy voxels, while green 

dots mark tumor voxels 

Table 1. Accuracy, sensitivity, and specificity of neural networks studied 

Classifier Type Data Type Accuracy Sensitivity Specificity 

SVM with linear kernel 
Train 65.6% 59.8% 72.9% 

Test 63% 56% 68% 

Multi-Layer Perceptron 
Train 81.1% 72.8% 87.7% 

Test 78.3% 66.7% 86.1% 

Fuzzy system with 4 membership functions 
Train 83.72% 82.9% 84.8% 

Test 82.5% 81.2% 84.5% 

SVM with Gaussian Kernel 
Train 89.7% 83.6% 94.6% 

Test 87% 82% 93% 
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good distinction between healthy voxels and tumor voxels 

[27-30]. As the results showed, there is just a spatial 

estimation of tumor and normal tissue, so this discrimination 

would be used as a preprocessing step for more 

segmentation, which determines the boundaries between 

tumor and normal tissue. More segmentation would be 

used to fine segmenting the border of tissue.  

As shown in Figure 1, the accuracy of the training 

increases with an increasing number of membership 

functions, and the accuracy of the test also increases 

with increasing the number of membership functions 

to 4, but with increasing to 5 and 6 membership functions, 

the accuracy of the test decreases. It can be claimed that 

when a fuzzy inference system becomes more complex, 

it becomes inaccurate, and no improvement in the overall 

accuracy of the system occurs. The accuracy of various 

training methods and testing methods was compared 

in reviewing and analyzing the experiment results. 

As shown in Table 2, the accuracy of training increases 

with increasing membership functions, but the accuracy of 

testing for fuzzy neural networks with 5 and 6 membership 

functions decreases. According to these accuracy values, 

the best number of membership functions was equal to 4 

functions. 

A short glance at these results shows that accuracy 

obtained by using a support vector with the linear kernel 

is the lowest, while the highest accuracy is obtained 

using a support vector with Gaussian kernel, and from 

highest accuracy to lowest: 

1. Backup vector with Gaussian kernel 

2. Fuzzy logic 

3. Multi-layer Perceptron 

4. Backup vector with linear kernel 

The analysis is as follows: considering the data type 

and its specifications, the support vector with Gaussian 

kernel shows the best and most appropriate complexity 

for data separation, and the fuzzy system and multi-layer 

perceptron also shows quality. However, since the fuzzy 

logic also uses Gaussian membership functions, it appears 

that the data used in this study would be better separated 

in Gaussian form. Therefore, it has higher accuracy than 

multi-layer Perceptron. Additionally, it is evident that the 

support vector's accuracy with the linear kernel is drastically 

reduced, which implies the data in this study is not 

linearly separable. 

In the next step, the sensitivity and specificity data will 

be analyzed. The values are shown in Figure 7. 

Figure 7 shows that in all cases, the sensitivity is lower 

than the specificity, which indicates the tumor patches 

are determined less accurately than healthy patches. On 

the other hand, it is understandable that the above data 

specifications are not optimal, and other metabolites are 

needed to separate the voxels. However, because of the 

data's complexity, it can be said that fewer specifications 

should be used in the data but with higher quality.  

Classifier Type Data Type Accuracy Sensitivity Specificity 

SVM with linear kernel Train 65.6% 59.8% 72.9% 

Test 63% 56% 68% 

Multi-Layer Perceptron Train 81.1% 72.8% 87.7% 

Test 78.3% 66.7% 86.1% 

Fuzzy system with 4 membership functions Train 83.72% 82.9% 84.8% 

Test 82.5% 81.2% 84.5% 

SVM with Gaussian Kernel Train 89.7% 83.6% 94.6% 

Test 87% 82% 93% 

 

Table 2. Training and test accuracy values with a number of different membership functions 

Number of Membership functions 2 3 4 5 6 

Training Accuracy 78.4% 80% 83.72% 89.6% 92% 

Test Accuracy 76.74% 79.07% 82.5% 79.07% 74.42% 

 

 
Figure 7. Comparison of sensitivity and specificity in different methods 
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