
Copyright © 2021 Tehran University of Medical Sciences.  
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International 
license (https://creativecommons.org/licenses/by-nc/4.0/). Noncommercial uses of the work 
are permitted, provided the original work is properly cited.  
DOI: https://doi.org/10.18502/fbt.v8i3.7110 

 

 

Frontiers in Biomedical Technologies Vol. 8, No. 3 (2021) 161-169 

 

 

 

 

 

Discrimination between Inhibitory and Excitatory Neurons of Mouse 

Hippocampus Based on the Shape of Extracellular Spike Waveforms 

Mehrdad Oghazian, Farzad Saffari, Ali Khadem *   

Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran 

*Corresponding Author: Ali Khadem 
Email: alikhadem@kntu.ac.ir 

Received: 29 January 2021 / Accepted: 19 April 2021  

Abstract 

Purpose: Inhibitory and excitatory neurons play an essential role in brain function, and we aim to introduce an 

automatic method to discriminate these two populations based on features of the shape of their spikes. 

Consequently, we will explain the spike extraction from raw data of a single shank electrode and determine the 

best features of spike waveforms for the classification of neurons. It is noteworthy that, to the best of our 

knowledge, classification of inhibitory and excitatory neurons using the shape features extracted from their spike 

waveforms has not been done before. 

Materials and Methods: In this paper, we use a dataset of mouse hippocampus neurons in which the neuron types 

(inhibitory or excitatory) have been verified optogenetically. For the classification of mouse hippocampus 

neurons, we extracted eight shape features of their spike waveforms in addition to their firing rates and used three 

types of classifiers: K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), and Support Vector 

Machine (SVM) to analyze the discriminatory power of features based on the accuracy of the classifications. 

Results: We showed that Spike asymmetry, Peak-to-trough ratio, Recovery slope, and Duration between peaks 

were four shape features of spike waveforms participated in the optimum feature subsets that resulted in maximum 

classification accuracy. Moreover, the SVM classifier with RBF kernel resulted in maximum accuracy of %96.91 

± %13.03 and was identified as the best classifier. 

Conclusion: In this study, we found that shape features of spike waveforms can accurately classify inhibitory and 

excitatory neurons of mouse hippocampus. Also, we found an optimum subset of shape features of spike 

waveforms that resulted in better classification performance than previously proposed subsets of features used 

for clustering of neurons. Our findings open a promising way toward a functional classification of neurons 

automatically. 

Keywords: Inhibitory and Excitatory Neurons; Classification; Mouse Hippocampus; Shape Features; Spike 

Waveform; Extracellular Recordings. 

 

 

 

 

 

 

 

 

 

ORIGINAL ARTICLE 

https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.18502/fbt.v8i3.7110
https://orcid.org/0000-0003-4173-5268


Discrimination between Inhibitory and Excitatory Neurons of Mouse Hippocampus …  

162    FBT, Vol. 8, No. 3 (2021) 161-169 

1. Introduction  

It is impossible to know the brain without knowing its 

components, especially the neurons that play the most 

important role in the brain. By studying the behavior of 

a healthy brain, the normal behavior of neurons can be 

understood which consequently helps to detect abnormal 

cases. Inhibitory and excitatory neurons are the two main 

groups of neurons that show different functions during 

brain activity due to inherent differences in their behavior. 

The activity of inhibitory neurons reduces the firing rate 

of postsynaptic neurons while the activity of excitatory 

neurons increases the firing rate of postsynaptic neurons 

[1]. In this research, we study the behavior of inhibitory 

and excitatory neurons from the perspective of 

electrophysiological properties to identify the differences 

in the shape of their spike waveforms. Features obtained 

from the shape of spike waveforms, average firing rate, 

firing rate changes, etc. are in the category of 

electrophysiological properties of neurons. In this study, 

we intend to use the shape of the spike waveform of each 

neuron to determine its type (inhibitory or excitatory) 

with the help of an appropriate classification scheme. 

Various shape features of the spike waveform of neurons 

have been used in the literature to separate inhibitory 

and excitatory neurons, but the classification accuracy 

of their subsets has not been evaluated by an accurate 

validation method yet. In this study, we intend to compare 

shape features of the spike waveform of neurons with 

each other to determine the best ones for discriminating 

inhibitory and excitatory neurons from each other. For this 

purpose, we are going to introduce and extract appropriate 

shape features from the spike waveform of neurons that 

result in high classification accuracy by using the most 

common classifiers. Moreover, we will search for the most 

suitable classifier that can accurately separate excitatory 

and inhibitory neurons. 

In this research, in addition to previously defined shape 

features of spike waveforms, we also intend to provide 

some new shape features for functional separation 

(inhibitory and excitatory) of neurons and to evaluate 

and compare the discriminative power of the relevant 

features on the dataset recorded from the rat brain 

hippocampus, which has true inhibitory and excitatory 

labels. As far as we know, such an approach (classification 

of neurons using shape features of spike waveforms) 

has not been done in the previous studies.  

In the following parts of this paper, first, we introduce 

the properties of the mouse brain data. Afterward, the 

relevant shape features in use for the classification will be 

described briefly. Then, we will introduce some classifiers 

and evaluate their performance regarding every single 

feature and their subsets for the inhibitory/excitatory 

classification. Lastly, we will wrap up this article by 

providing a discussion on the optimum features and 

classifier selection, which could lead us to expand this 

research. 

2. Materials and Methods  

In this study, different shape features of the spike 

waveform of neurons and classifiers are examined for 

recognizing the excitatory or inhibitory neurons. We 

categorize neurons into inhibitory (class 1) and excitatory 

(class 2) within five steps: extracting shape features of 

spike waveforms, selecting subsets of features, balancing 

the data, classification, and validation. Nine features (F1 

to F9) were extracted from the spikes of mouse hippocampus 

neurons (650 excitatory and 26 inhibitory, verified 

optogenetically) to be used as inputs of the KNN, LDA, 

and SVM (linear and RBF) classifiers [2]. We divided 

650 excitatory neurons into 25 groups of 26 neurons 

each and repeated the classification procedure for each 

group of 26 excitatory neurons and 26 available inhibitory 

neurons in order to have 25 balanced classifications. Since 

in each classification, we had just 52 data samples to train 

and validate each classifier, we used LOOCV (leave-one-

out cross-validation) for efficient validation of classifications. 

Furthermore, we repeated LOOCV for all 25 (650/26) parts 

of excitatory neurons, and finally, all 25 obtained average 

accuracies of each classifier were averaged. 

2.1. Mouse Brain Data 

This data was recorded from the hippocampus of mice 

in the PV: ChR2 line at the age of 6-12 months by a 32-

channel silicon electrode integrated with light-emitting 

diodes or a 64-channel silicon electrode paired with optical 

fibers while the mice moved freely. At the data collection 

stage, the extracellular signals were prepared by the IR-

183 amplifier, band-pass filtered in the frequency range 

of 0.01–6 kHz, and recorded after sampling by an Intan 

RHD2000 device [3]. Spike sorting algorithms have been 

used to detect spike waveforms by clustering and then 

assigning all the waveforms of one cluster to an individual 

neuron. Spike clustering was performed by Kilosort 
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software [4] from broadband data (sampling frequency 

20-30 kHz) recorded from CA1 (first region of the 

hippocampus) of the rat’s brain. In mouse data, which 

contains 676 spike waveforms of neurons, the type of 

neurons was determined by optogenetics (26 inhibitory 

neurons and 650 excitatory neurons) [3]. The data was 

recorded at Buzaki lab at NYU neuroscience institute, 

and all animal handling procedures were approved by 

the Institutional Animal Care and Use Committee of 

New York University Medical Center.  

2.2. Feature Extraction 

The first step in the classification problem is feature 

extraction. Feature extraction is an essential step in 

determining classifier inputs. We proposed two new 

features, “one minus left peak of the spike waveform” 

and “time interval between left and right maxima”, in 

addition to 7 already existing features for the classification 

of neurons into inhibitory and excitatory categories. 

Before giving the features as inputs to the classifiers, the 

significance of difference in the mean of each feature 

between the inhibitory and excitatory groups was tested 

using the Wilcoxon rank-sum test and all the features 

passed this test (p-value <0.015). We aim to identify a 

subset of features that result in the best classification 

accuracy in separating inhibitory and excitatory neurons 

(listed in Table 1) and will describe them briefly hereunder. 

2.2.1. Duration 

The duration of each waveform is defined as the time 

between the depression of the spike waveform and the 

peak after it (Figure 1).  

2.2.2. Half-Width Duration 

Half-width duration is the width of the spike waveform 

at half-maximum height (Figure 2) [6].  

2.2.3. Peak Amplitude Asymmetry 

Peak amplitude asymmetry is defined as the ratio 

between the difference of the maxima and the sum of 

the maxima of the spike waveform (Figure 3).  

2.2.4. Peak-to-Trough Ratio 

The peak-to-trough ratio is defined as the ratio between 

the amplitude of the spike waveform at maximum to 

that at minimum (Figure 4).  

2.2.5. Recovery Slope 

The recovery slope is equal to the tangential slope on 

the spike waveform between the maximum point and 

the subsequent turning point (Figure 5).  

Table 1. Nine features used for the classification: F1 

to F9. The p-values obtained from the Wilcoxon rank-

sum test are reported 

Feature 

Number 
Features P-value 

F1 Duration 3.82e-16 

F2 Half-width duration 9.11e-19 

F3 Peak amplitude asymmetry 6.77e-16 

F4 Peak-to-trough ratio 2.40e-12 

F5 Recovery slope 1.42e-2 

F6 Repolarization slope 3.50e-15 

F7 Duration between peaks 1.63e-15 

F8 1 - (left peak) 7.63e-18 

F9 Firing rate 8.83e-15 

 

 
Figure 1. The duration of spike waveform [5] 

 
Figure 2. The Half-width duration of spike waveform [6] 

 
Figure 3. The Peak amplitude asymmetry of 

the spike waveform [7] 

 
Figure  4. The Peak-to-trough ratio of spike 

waveform [8] 
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2.2.6. Repolarization Slope 

The repolarization slope is the tangential slope on the 

spike curve between the bottom of the waveform and 

the subsequent turning point (Figure 6).  

2.2.7. Duration between Peaks 

The duration between peaks is the time interval between 

the left and right maxima which is a new feature suggested 

by us (Figure 7). 

2.2.8. One Minus Left Peak 

1-(left peak) is equal to one minus the left maximum 

value which is another new feature suggested by us 

(Figure 8).  

2.2.9. Firing Rate 

The number of spikes per second is called the firing 

rate. The firing rate of a neuron is not constant over time 

and changes. The way that the firing rate changes varies 

between neurons. For example, in the bursting category, 

a large number of spikes are released in a few tens of 

milliseconds and the neuron is silenced again. To derive 

the firing rate of each neuron during an experiment, we 

count the number of spikes and divide them by the time 

of the experiment. Although firing rate is not a shape 

feature of spike waveforms, we also evaluate its performance 

in our paper due to its importance. 

2.3. Generating all Subsets of Features 

In this paper, we try to find the best single features and 

also the best subset of features to discriminate excitatory 

and inhibitory neurons. Therefore, the next step after 

extracting the features is to generate a subset of them for 

giving as inputs to the classifiers. Generating a subset 

of features means selecting groups of features with m 

members (1≤m≤ 9). The total number of possible subsets 

is equal to 2m-1. We divide features into subsets of 1 to 

9 members. These features are used as input for classifiers. 

Among all possible feature subsets, we are looking for the 

subset which results in the highest classification accuracy. 

2.4. Balancing the Data 

The number of members of the inhibitory and excitatory 

groups is 26 and 650, respectively. If we train a 

classifier with all this dataset together, it will be biased 

toward assigning most test samples to the excitatory 

category. It means, in most cases, the type of neurons in 

the test data will be decided as excitatory by the classifier, 

and to avoid this, we balance the data between these 

categories. For this purpose, we divided the excitatory 

neurons into 25 groups of 26 members each and performed 

training and testing on 25 batches of 26 inhibitory and 

26 excitatory neurons, and LOOCV was performed so 

that each time a different neuron was selected from a 

total of 52 neurons as test data so that all members could 

enter the test phase and the accuracy of LOO repetitions 

was averaged [9]. Finally, averaging was performed on 

the 25 average classification accuracies obtained by 

LOOCV. 

2.5. Classifiers 

In addition to linear classifiers such as LDA and linear 

Support Vector Machine (SVM), we also used nonlinear 

classifiers such as KNN and SVM with Radial Basis 

Function (RBF) kernel to classify non-linearly separable 

data. Hereunder, we will briefly introduce the applied 

classifiers. 

 
Figure 5. The Recovery slope of the spike waveform [8] 

 
Figure 7. The Duration between peaks of the spike waveform 

 
Figure 6. The Repolarization slope of the spike waveform [8] 

 
Figure 8. The feature one minus left peak of spike waveform 



 M. Oghazian, et al.  

FBT, Vol. 8, No. 3 (2021) 161-169 165 

2.5.1. Linear Discriminant Analysis (LDA) 

The goal of the LDA is reducing the number of the 

features to one while maintaining the most information 

that can be used to separate classes. We seek to find a 

line with coefficients w to project the data samples on 

that results in the highest separation between classes. 

To better separate the two classes, we seek to maximize 

the objective function shown in Equation 1: 

𝐽(𝑤) =  | �̂�1 − �̂�2|2/ (�̃�1
2 + �̃�2

2) (1) 

In this equation, (μi ) ̂ denotes the mean of ith class 

after projection, and s ̃i denotes the scatter within class i 

[10]. To find the optimum w, we first rewrite the objective 

function as shown in Equation 2: 

𝐽(𝑤) = 𝑤𝑇  𝑆𝐵𝑤/𝑤𝑇  𝑆𝑊𝑤                         (2) 

Where SB and SW are the between-class and within-

class scatter matrices. 

By derivation of Equation 2 with respect to w and 

equating it to zero, we reach the optimum value of w*, 

which is obtained as follows (Equation 3) [11]: 

𝑤∗ =  𝑆𝑊
−1(�̂�1 − �̂�2) (3) 

2.5.2. Linear Support Vector Machine (Linear SVM) 

In the linear SVM, we look for the optimum hyperplane 

(w) that has the largest margins between the two groups. 

To find the optimum hyperplane, we minimize the objective 

function (Equation 4) considering the constraints (Equation 

5) using Lagrange coefficients. 

𝐽 (𝑤) =
1

2
 ‖𝑤‖2 (4) 

𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑤0) ≥ 1 (5) 

In these equations, W is the plane separating the two 

classes, W0 is the bias term, xis are the support vectors 

and yi-s are their class labels (C1=+1 and C2=-1). The 

final answer to this optimization problem is equal to: 

𝑤∗ =  ∑ 𝜆𝑖𝑥𝑖𝑦𝑖

𝑁

𝑖=1

 

𝜆𝑖= Lagrange coefficients 

(6) 

The class of data sample x can be determined using 

the following formula: 

𝑤∗𝑇x + 𝑤0≥ 1          x ϵ 𝐶1     (7) 

𝑤∗𝑇x+𝑤0≤ -1         x ϵ 𝐶2  (8) 

2.5.3. Support Vector Machine with RBF Kernel 

SVM with RBF kernel solves the classification problem 

in a higher dimensional space which allows the classifier 

to separate the two classes that are non-linearly separable. 

By using the RBF kernel, the data is transformed to a very 

high-dimensional space and afterward, the SVM is used 

to classify the data. An RBF kernel has the general form 

of Equation 9 [11]: 

𝐾(𝑥1, 𝑥2) = 𝑒𝑥𝑝 (−
‖𝑥1 − 𝑥2‖2

𝜎2
) (9) 

In this formula, x1,x2 are two vectors and σ2 is the 

variance parameter. Also, the optimization problem is 

as Equation 10: 

MAX ( ∑ 𝜆𝑖𝑖  - 
1

2
 ∑  𝜆𝑖 𝜆𝑗 𝑦𝑖  𝑦𝑗  𝐾(𝑥𝑖 , 𝑥𝑗)𝑖𝑗 ) (10) 

Subject to: 0  ≤  λi ≤  C,  I = 1, 2, …, N & ∑ λi yii  = 0 

In this equation, C is a constant positive coefficient. 

By solving Equation 10 via Lagrange coefficients, we get 

Equation 11 for determining the class of data sample 

x when the classes are not linearly separable [12]. 

g (𝑥) = ∑ 𝜆𝑖𝑦𝑖
𝑁𝑠
𝑖=1 K (𝑥𝑖 , 𝑥) + w0                   

if g (x) > (<) 0  class is C1(C2) 

(11) 

2.5.4. K-Nearest Neighbors (KNN) 

In the KNN classifier, the class of an unknown data 

sample is determined according to the density of points 

related to each group in the K neighbors closest to the 

unknown data sample [11]. The unknown data sample 

is assigned to the category that is most repetitive among 

its K nearest neighbors. 

3. Results 

In this section, we report the classification accuracy 

of each classifier, which has been fed with all the subsets 

of the above-mentioned features. Finally, the optimum 

classifier and the best features will be determined and 

discussed. 

3.1. LDA 

Initially, the features were used individually as inputs 

to the LDA classifier, and the results are shown in Table 2. 

The maximum classification accuracy in one-dimensional 
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space was obtained using both single-features F3 and F9, 

and is 96.14% but F9 leads to a smaller standard deviation.  

3.2. Linear SVM 

As shown in Table 3, using the linear SVM, in one-

dimensional space the maximum average accuracy of 

%96.30 is obtained using F9.  

3.3. RBF SVM 

To determine the suitable standard deviation (σ) of the 

radial basis kernel, we determined the maximum accuracy 

obtained from different values of σ in one-dimensional 

space. The maximum accuracy was obtained for σ =0.25. 

The classification accuracy using every single feature 

and the SVM classifier with the RBF kernel with σ=0.25 

is given in Table 4. As shown in Table 4, using the 

radial SVM, in one-dimensional space the maximum 

average accuracy of %96.37 is obtained using F8. 

3.4. KNN 

At first, the proper value of K was unknown to us, and 

we tested the KNN in the range of K between 1 and 13. 

In one-dimensional space, the maximum average accuracy 

of 96.68% was obtained using F8 and K=5 neighbors. 

As a result, we consider only K=5 nearest neighbors. The 

results of using all single features and KNN classifier 

with K=5 are shown in Table 5.  

3.5. Optimum Features 

After determining the best single features for each 

classifier, we want to determine the best subset of features 

that lead to the highest classification accuracy. For this 

purpose, we report the maximum classification accuracy 

obtained by each classifier in Table 6 and the corresponding 

best features are illustrated in Table 7. Because the 

Table 2. The classification accuracy obtained using 

every single feature as input of the LDA classifier 

Feature Testing Accuracy  )%( (mean ± std) 

F1 95.68 ± 13.79 

F2 95.68 ± 13.78 

F3 96.14 ± 13.55 

F4 96.07 ± 13.47 

F5 95.99 ± 13.44 

F6 95.91 ± 13.44 

F7 95.99 ± 13.42 

F8 95.83 ± 13.44 

F9 96.14 ± 13.4 

 

Table 3. The classification accuracy obtained using 

every single feature as input of the linear SVM classifier 

Feature Testing Accuracy  )%( (mean ± std) 

F1 95.83 ± 13.56 

F2 95.68 ± 13.67 

F3 95.91 ± 13.59 

F4 95.99 ± 13.52 

F5 95.91 ± 13.51 

F6 95.99 ± 13.48 

F7 95.99 ± 13.45 

F8 95.99 ± 13.44 

F9 96.30 ± 13.37 

 

Table 4. The classification accuracy obtained using 

every single feature as input of the RBF SVM classifier 

with σ=0.25 

Feature Testing Accuracy  )%( (mean ± std) 

F1 96.14 ± 13.09 

F2 91.75 ± 16.02 

F3 95.53 ± 15.39 

F4 63.44 ± 17.12 

F5 84.58 ± 17.37 

F6 94.21 ± 16.81 

F7 92.6 ± 16.63 

F8 96.37 ± 16.22 

F9 88.43 ± 16.00 

 

Table 5. The classification accuracy obtained using 

every single feature as input of the KNN classifier with 

K=5 

Feature Testing Accuracy  )%( (mean ± std) 

F1 66.44 ± 14.95 

F2 93.52 ± 15.75 

F3 95.68 ± 15.14 

F4 77.4 ± 16.55 

F5 84.27 ± 17.36 

F6 63.81 ± 16.84 

F7 93.14 ± 16.57 

F8 96.68 ± 16.13 

F9 88.5 ± 15.9 
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maximum average accuracy among all classifiers is 

96.91%, which was obtained using the RBF SVM, in 

our opinion the features that led to this accuracy (F3, F4, 

F5, and F7) may be considered as the best feature subset. 

Consequently, Peak amplitude asymmetry, peak to trough 

ratio, recovery slope, and duration between peaks are the 

selected features. 

Now we want to prioritize these four features. For this 

purpose, we inspect the average classification accuracy 

obtained using each of these four features and RBF SVM 

classifier as shown before in Table 4. Since F3 results 

in the highest accuracy, it can be considered as the most 

effective feature, followed by F7, F5, and F4. 

4. Discussion  

We aim to compare the optimum classification accuracy 

we obtained by the RBF SVM classifier (because it 

resulted in the highest accuracy) with the accuracy 

resulted using RBF SVM and the same classification 

approach as we used but using the features proposed in 

other articles although for clustering the neurons and not 

classifying them. As can be seen in Table 8, the highest 

average classification accuracy using the features mentioned 

in the past articles is 96.24% which is obtained using 

features F1 and F3. However, the highest average 

classification accuracy we obtained (96.91%) shows 

an improvement of 0.67%. In the absence of validation 

methods such as optogenetics, some articles use 

electrophysiological methods such as inhibitory and 

excitatory groups. Although classification was done on 

neurons of mouse hippocampus, our proposed scheme may 

be applicable to other species like humans and monkeys 

and other brain regions as well, which would be a proper 

option to expand this research. 

5. Conclusion 

In this paper, we classified the mouse hippocampus 

neurons into inhibitory and excitatory categories using 

eight shape features of spike waveforms in addition to 

their firing rates, and applying LDA, KNN, and SVM 

classifiers. We showed RBF SVM was the best classifier 

for functional separation of mouse brain’s neurons. Also, 

we showed Spike asymmetry, Peak-to-trough ratio, 

Recovery slope, and Duration between peaks were the 

most discriminative features to classify neurons into  

spike train cross-correlation to validate their clustering 

results. Validation with optogenetics is provided when 

the species under test is of the parvalbumin category and 

also optogenetic stimulation tools are present at the same 

time. 

It is noteworthy that, different features of firing 

rates were used in [13] to discriminate inhibitory and 

excitatory neurons using a clustering scheme. However, 

no classification scheme was proposed in that paper to 

assess the classification accuracy using those proposed 

Table 6. Maximum classification accuracy obtained by different classifiers 

Classifier Testing Accuracy (%) (mean ± std) Confusion Matrix Optimum Feature Set 

KNN 96.68 ± 16.13 
1 0 

F8 
0.066 0.933 

LDA 96.22 ± 13.58 
1 0 

F4, F6 
0.075 0.924 

SVM (Linear) 96.76 ± 12.77 
1 0 

F3, F4, F5, F9 
0.064 0.935 

SVM (RBF) 96.91 ± 13.03 
1 0 

F3, F4, F5, F7 
0.061 0.938 

 

Table 7. Features that led to the highest classification 

accuracy using each classifier  

Feature 

Classifier 

KNN LDA 
SVM 

(Linear) 

SVM 

(RBF) 

F1     

F2     

F3   * * 

F4  * * * 

F5   * * 

F6  *   

F7    * 

F8 *    

F9   *  

 



Discrimination between Inhibitory and Excitatory Neurons of Mouse Hippocampus …  

168    FBT, Vol. 8, No. 3 (2021) 161-169 

features. Applying our proposed classification approach 

using RBF SVM on the firing rate features proposed in 

[13] to compare the classification performance of that 

feature set would be future work. Although, as shown in 

Table 8, firing rate alone (F9) or in combination with shape 

features F1:F8 are not optimum for the classification 

of inhibitory and excitatory neurons since the shape 

features of spike waveforms resulted in the optimum 

classification accuracy. 
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