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Abstract 

Purpose: Brain-Computer Interface (BCI) provides a secondary communication pathway for patients with 

neuromuscular diseases such as amyotrophic lateral sclerosis (ALS) or brainstem stroke in which they are almost 

incapacitated to move or talk. BCI enacts neural oscillations to generate a command signal for machines to operate 

desired tasks instead of patients. Steady-State Visual Evoked Potential (SSVEP) is the brain response to a visual 

stimulus, with the same frequency as its eliciting signal (or its harmonics), that has been widely used in BCI 

environments. In order to provide a more convenient situation for BCI users, we aim to find the best single-

channel EEG, which results in the highest accuracy for detecting SSVEP. 

Materials and Methods: We developed a Deep Convolutional Neural Network with single-channel EEG as input 

to classify a 40-class SSVEP; each class represents a stimulus, which has been acquired from 35 subjects. We 

used 3.5 s windows of the data (Trials of 3.5 seconds length for each class) to train our model and leave-one-

subject-out cross-validation for the testing. 

Results: The proposed method resulted in the average classification accuracy of 74.30%±20.85 and Information 

Transfer Rate (ITR) of 57.51 bpm which outperforms the previous single-channel SSVEP BCIs in terms of ITR. 

Also, the O1 channel achieved the best performance criteria among the channels in the occipital and parietal 

lobes, which seems reasonable according to previous researches for finding the location of neurons, responsible 

for visual tasks in the brain. 

Conclusion: In this study, we dedicated our efforts to reduce the number of EEG channels to a single channel 

while proposing a deep learning strategy for an SSVEP-based BCI speller to make it more feasible for patients 

whose lives are dependent on such systems. The overall results, although not ideal, open a new promising window 

toward a feasible BCI system. 

Keywords: Brain-Computer Interface Speller; Steady-State Visual Evoked Potential; Deep Learning; 

Convolutional Neural Networks; Single-Channel Electroencephalogram. 
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1. Introduction  

Brain-Computer Interfaces (BCIs) provide a secondary 

pathway of communication with the help of measuring 

brain activity [1, 2, 3]. The main aim of these systems 

is to utilize the neural activity of the brain to produce 

command signals and send them to a machine to perform 

predefined tasks [4]. As such, people can communicate 

with their environment without almost any muscle 

movements [5]. Electroencephalography (EEG) is one of 

the most promising neuroimaging modalities to measure 

the neural oscillations of the brain. Recently, this technique 

has gain attention, especially from the BCI community, 

due to its high temporal resolution and inexpensiveness. 

We could extract the essential features from the EEG data 

to generate suitable command signals for the predetermined 

purpose of the BCI. To this end, there are numerous ways 

to elicit electrophysiological patterns in the neural activity 

of the brain such as Event-Related Potentials (ERP) and 

Steady-State Visual Evoked Potentials (SSVEP) which 

are auspicious avenues for producing these signals for 

further measurements and usages [2, 6, 7], with copious 

advantages which make them a suitable choice for many 

BCI applications. 

SSVEPs are sensory-stimuli-based potentials [8], 

obtained by applying visual stimuli, generally with 

frequencies greater than 4 Hz [9]. The most distinctive 

feature of SSVEP is having the same frequency 

components as the stimuli or its fundamental harmonics 

[10], which would be advantageous for many BCI 

functions. For instance, decoding information in stimuli 

with a specific frequency and further detection and enacting 

it as a command signal would be less demanding in 

comparison with other eliciting patterns in BCIs, since 

the brain response would have the same frequency of that 

stimuli [5]. Furthermore, in comparison with other neural 

patterns, SSVEPs have a higher Signal-to-Noise Ratio 

(SNR) [5] and Information Transfer Rate (ITR) [11]. 

The core of any BCI system is the module that detects 

the essential information from the EEG signals [12]. 

This part aims to extract the key patterns from the EEG 

to generate a proper command as the output of the 

system [13]. In the SSVEP case, this module should 

extract the SSVEP from EEG signals and classify each 

frequency component of the SSVEP as well. Power 

Spectrum Density Analysis (PSDA) [14, 15], which 

utilizes amplitude of the signal in the frequency domain 

to classify SSVEPs, and Canonical Correlation Analysis 

(CCA) [16, 17], which uses the correlation coefficient 

of the stimuli and the EEG for detecting SSVEPs, are 

some traditional methods that have been adopted in 

SSVEP-based BCI. These algorithms have encountered 

some issues regarding SSVEP classification which 

convinced researchers to use some alternative approaches. 

For instance, PSDA could not perform properly in noisy 

environments [18], or CCA results in low ITR due to 

the time-consuming process of self-calibrating [12]. 

With this regard, machine learning and especially deep 

learning approaches would be highly advantageous in 

a noisy and non-stationary situation such as EEG [19].  

Since the emergence of machine learning and deep 

learning algorithms, they have played significant roles 

in solving complex classification problems [20] with 

no priori information about the discriminative features, 

but generally, with the cost of requiring a considerable 

amount of data for training the models. Also, in order to 

provide a more convenient environment for BCI users, 

and make these systems more practical, we should reduce 

the number of EEG channels in use. Therefore, we aim to 

combine these two issues and come up with a convolutional 

neural network and to find the best single-channel EEG 

among the most probable channels, that reaches out to 

reasonably high classification accuracy and ITR and 

sound performance. By considering this fact that regularly, 

a deep learning model requires a huge amount of data 

to be well-trained, our CNN model has been designed 

in such a way that could outperform other deep learning 

models that have been trained on a multi-channel EEG. 

To the best of our knowledge, no other deep learning 

model has been proposed for a single-channel BCI, with 

an acceptable outcome regrading ITR. In the following 

parts of this article, we dive into our model and discuss it 

in detail, and thereafter, the analysis of each EEG channel 

and the conclusion of the research would be presented. 

2. Materials and Methods  

2.1. SSVEP BCI Speller Dataset 

In this study, we train and test our proposed model 

with the SSVEP dataset that is freely available in [20]. 

In this experiment, 35 subjects with normal or correlated-

to-normal vision contributed. They have been exposed 

to 40 class visual stimuli containing English characters 

and numbers. Each subject has gone through the 

experiment for all of the stimuli in 6 blocks, each of 
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them contains a 6-second stimulus (0.5 seconds before 

onset and 0.5 seconds after the off-set). The EEG data 

were recorded at a 1000Hz sampling rate and then 

down-sampled to 250 Hz, which means that each trial 

consists of 1500 samples. Moreover, they have used 

64 EEG channels for their recording, including nine 

important channels in SSVEP studies O1, O2, Oz, POz, 

Pz, PO3, PO4, PO5, and PO6. Further information about 

the dataset is available in [20]. 

2.2. Convolutional Neural Network (CNN) 

Pattern recognition and machine learning methods 

have had tremendous effects on different fields of science, 

which mainly concern the classification problems, 

including computer vision [15], natural language 

processing [16], as well as studies with biological directions 

such as medical image processing [17] or biological 

signal processing [18]. Respecting this, since the 

performance of a BCI system hugely depends on the 

accuracy of the classification part, researchers have 

commenced gaining favor from these remarkable 

algorithms to boost the proceeds of their systems.  

Despite the significant progress that classical machine 

learning methods bring about in BCI systems [19], there 

are remaining challenges in this field that should be 

taken away such as the vulnerability of EEG signals to 

various noise and artifacts such as heart signals and 

eye blinking [19] which makes it a demanding task to 

extract essential features from the naturally polluted EEG 

signals. Considering this, deep learning algorithms like 

CNN would become handy in this kind of situation, 

especially since they automatically extract the essential 

features [12]. 

CNN consists of different types of modules with 

specific tasks, in which they perform for the final goal 

of the model. Generally speaking, these models include 

convolution windows with activation functions, pooling 

layer, batch normalization, and fully connected layer. 

Moreover, some other techniques such as drop out have 

been included in these networks to avoid overfitting. 

Typically, the convolution window comprises some filter 

of specific dimension that is convolved with data, multiplies 

each weight with the data window, adds the bias, and 

uses the activation function to provide the appropriate 

input for the next layer. In this way, the number of 

trainable parameters will be significantly reduced, in 

comparison with a fully connected neural network which 

multiplies every weight with every segment of the data 

window. Other modules in the CNN have their own 

purposes like a pooling layer for reducing the dimensionality 

of the data and computation cost, or batch normalization 

for accelerating the learning procedure. Finally, the fully 

connected layer provides as much information for the 

final layer, to perform the final goal of the model, which 

could be a SoftMax layer in a classification problem. 

2.3. Our Proposed CNN Model 

In this study, we are going to decrease the number 

of EEG channels to a single channel to make the SSVEP-

based BCI speller more practical for real applications, 

while proposing a deep learning strategy to make the 

system more powerful in exploring the discriminative 

features. Consequently, we proposed a deep convolutional 

neural network that is trained by just a single EEG channel. 

The scheme of our model is presented in Figure 1.  

As illustrated in Figure 1, the input layer contains 

one EEG channel with 896-time samples (1 × 896). In 

fact, we utilize a 3.5-second time window of the data 

(with a 256 sampling rate) which adds up to 896-time 

samples. The first convolution layer consists of 96 kernels 

with 1 × 256 size. Afterward, there is a depthwise 

convolution for each map with the 1 × 9 kernel size. 

Then, the last convolution layer consists of 96 kernels 

with 1 × 16 size. Lastly, there is a fully connected layer 

to provide as much information for the classifier layer, 

with 40 neurons representing 40 stimuli and classes. 

Each convolution layer follows a batch normalization 

layer for boosting the training speed of the model [21]. 

After the second and third convolution layers, we have 

average pooling and dropout layer, with 0.5 dropout 

rates, to avoid overfitting. The Elu activation function 

has been adopted for each layer except for the output 

layer, which contains a SoftMax activation to perform 

 

Figure 1. The block diagram of the proposed CNN model 
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the classification task. The Adam optimizer [22] with 

a 0.001 learning rate and a categorical cross-entropy 

loss function (Equation 1) is used. 

𝐿𝑜𝑠𝑠𝑖 =  − ∑ 𝑡𝑖,𝑗𝑙𝑜𝑔 (𝑝𝑖,𝑗)

𝐶

𝑗=1

 (1) 

Where p represents the model prediction, C denotes 

ground truth, i is the sample number, and j shows the 

class label. 

3. Results and Discussion 

Since it is most likely to detect SSVEP in the occipital 

and parietal lobes [9], we focused our analysis on just 

nine EEG channels (O1, O2, Oz, POz, Pz, PO3, PO4, 

PO5, and PO6) instead of all 64 available channels. We 

trained our CNN model with each of these nine channels 

to analyze our model. The leave-one-subject-out cross-

validation technique was used for training and testing 

our model to ensure avoiding overfitting and selection 

bias. The model was trained for each channel in this way 

for 100 epochs. The learning curve of subject number 

32 for the O1 channel is represented in Figure 2, which 

illustrates an example of subjects that achieve the best 

test result (100%). As indicated in this figure, the model 

is well trained and had successfully reached the optima.  

The classification accuracy metric evaluates our CNN 

model, which guarantees us how accurate our model could 

predict the labels of the new data based on the ground truth 

that the model was trained on. Table 1 illustrates our 

analysis results in which channel O1 achieved the best 

performance with 74.30±20.85 % classification accuracy 

on average for 35 subjects which is significantly (p-

value<0.01, paired-samples t-test) higher than those of 

all other single channels. This result does make sense 

according to previous research for finding the location 

of neurons responsible for generating SSVEP [8, 21], 

in which they achieved similar results for spatial location 

of SSVEP sources. Afterward, another evaluation metric 

for measuring the performance of a BCI system, called 

the Information Transfer Rate (ITR), was investigated, 

which mainly depends on the classification accuracy. ITR 

shows the BCI system’s speed for transferring the 

information with a bit per second/minute unit (Equation 2) 

[22], and it is a much more reliable metric than classification 

accuracy for a BCI system since it also considers other 

aspects of the data such as the number of classes and the 

duration of the data. 

𝐼𝑇𝑅 = (𝑙𝑜𝑔2 𝑚 + 𝑃 𝑙𝑜𝑔2 𝑃 + (1 − 𝑃) 𝑙𝑜𝑔2 [
1 − 𝑃

𝑚 − 1
]) ×

60

𝑇
  

(2) 

Where m represents the number of classes, P denotes 

the accuracy of the selected channel, and T represents the 

selection time (in our case, 3.5 seconds). The mean ITR 

Table 1. The classification accuracy (%) of our proposed CNN for each EEG channel. 

(Sn=nth Subject in the dataset) 

EEG Channel 

(ordered by mean accuracy) 
Max Min Mean STD 

𝐎𝟏 100 (S31) 6.75 (S32) 74.30 20.85 

𝐏𝐎𝟑 100 (S25) 20.5 (S32) 70.28 23.53 

𝐎𝐳 99.16 (S4) 5.16 (S32) 56.66 25.68 

𝐏𝐎𝟓 97.08 (S19) 4.7 (S16) 55.34 25.46 

𝐎𝟐 100 (S4) 4.78 (S32) 53.85 26.50 

𝐏𝐎𝐳 100 (S3) 9.75 (S1) 53.27 26.23 

𝐏𝐳 87.90 (S25) 11.31 (S28) 37.20 20.60 

𝐏𝐎𝟒 82.08 (S25) 3.75 (S33) 35.81 22.21 

𝐏𝐎𝟔 79.58 (S4) 2.08 (S33) 32.55 20.41 

 

 
Figure 2. The Learning curve for subject 32, using 𝑂1 

channel as an input 
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for the 𝑂1 channel was 57.51 bpm that was significantly 

(p-value < 0.01, paired-samples t-test) higher than those 

of all other single channels. Also, the maximum ITR for 

the 𝑂1 channel was 91.23 bpm higher than those of all 

other single-channels. A comparison among (some of) 

single-channel SSVEP BCI has been provided in Table 2. 

It should be noted that some of these methods have not 

been applied to the same dataset and consequently, this 

comparison could not be intuitive in all aspects. Since the 

length of time window has been different among different 

studies, considering ITR instead of the classification 

accuracy would give us a fair comparison. In terms of ITR, 

our proposed method significantly outperforms the previous 

single-channel SSVEP studies. Moreover, as it is shown 

in Table 2, it should be noted that other models such as 

[18], have been trained on a dataset with only five classes, 

which is a much simpler classification task compared to 

our problem. In addition, only some of these models like 

[18, 23, 24] have used single-channel EEG data, and the 

rest of the models (deep learning models) have used at least 

three channels of EEG. By considering all of these into 

account, our proposed model, which only uses single-

channel EEG outperformed all of these methods in the 

case of ITR which normally, a BCI is evaluated by. 
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