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Abstract 

Purpose: Glioma tumor segmentation is an essential step in clinical decision making. Recently, computer-aided 

methods have been widely used for rapid and accurate delineation of the tumor regions. Methods based on image 

feature extraction can be used as fast methods, while segmentation based on the physiology and pharmacokinetic 

of the tissues is more accurate. This study aims to compare the performance of tumor segmentation based on these 

two different methods. 

Materials and Methods: Nested Model Selection (NMS) based on Extended-Toft’s model was applied to 190 

Dynamic Contrast-Enhanced MRI (DCE-MRI) slices acquired from 25 Glioblastoma Multiforme (GBM) patients 

in 70 time-points. A model with three pharmacokinetic parameters, Model 3, is usually assigned to tumor voxel 

based on the time-contrast concentration signal. We utilized Deep-Net as a CNN network, based on Deeplabv3+ 

and layers of pre-trained resnet18, which has been trained with 17288 T1-Contrast MRI slices with HGG brain 

tumor to predict the tumor region in our 190 DCE MRI T1 images. The NMS-based physiological tumor 

segmentation was considered as a reference to compare the results of tumor segmentation by Deep-Net. Dice, 

Jaccard, and overlay similarity coefficients were used to evaluate the tumor segmentation accuracy and reliability 

of the Deep tumor segmentation method. 

Results: The results showed a relatively high similarity coefficient (Dice coefficient: 0.73±0.15, Jaccard 

coefficient: 0.66±0.17, and overlay coefficient: 0.71±0.15) between deep learning tumor segmentation and the 

tumor region identified by the NMS method. The results indicate that the deep learning methods may be used as 

accurate and robust tumor segmentation. 

Conclusion: Deep learning-based segmentation can play a significant role to increase the segmentation accuracy 

in clinical application, if their training process is completely automatic and independent from human error.  

Keywords: Pharmacokinetic Analysis; Nested Model Selection; T1-Weighted Contrast Enhanced Magnetic 

Resonance Imaging; Tumor Segmentation; Deep Learning-Based Algorithm. 
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1. Introduction  

Tumor segmentation is an important and fundamental 

step in assessing the brain tumor situation and planning 

for an appropriate treatment approach. Measurement of 

tumor parameters after each treatment to assess the tumor 

response needs an accurate voxel-wise segmentation of 

the tumor region [1]. Manual tumor delineation is a time-

consuming process that requires a group of clinical 

experts. Therefore, it can be easily affected by human 

error. Many researchers have focused on computer-aided 

techniques such as image processing [2, 3], artificial 

intelligence [4], fuzzy clustering methods [5, 6], and 

more recently, deep alignment algorithms [7-11] to 

increase the accuracy and speed of the tumor 

segmentation process. Recently, machine learning-based 

methods have been successfully used in clinical 

applications and played a significant role in increasing 

accuracy and speed for diagnosis and treatment of 

diseases, including brain tumors. In the meantime, a 

major part of machine learning applications has been 

used in the field of tumor segmentation. In the last 

decade, the tumor segmentation based on deep neural 

networks achieved the state-of-the-art performance in 

clinical image recognition and segmentation. Deep 

neural networks have been widely used for tumor 

segmentation in the last few years. Deep learning-based 

methods have been presented as reasonable and 

accurate tumor segmentation method in the recent 

investigations [12-17]. Convolutional neural networks, 

CNNs, are capable of learning the most useful image 

features automatically. It is necessary to mention that 

neither manual segmentation nor feature selection are 

required by the aforementioned networks, thus they 

have been extensively used in tumor segmentation [18]. 

The previous reports implied a successful experience of 

employing the deep convolutional network in the 

segmentation tasks [8, 12, 19, 20]. Most of the 

previously trained deep neural networks were assessed 

against the manually drawn region of interest by one 

or a group of experienced radiologists. The different 

convolutional network structure such as U-Net [12-14, 

21], Dilated Residual Network (DRN) [22], Deeplabv3+ 

based on Xception layers [23] was employed to 

determine the tumor region. Their results indicated a 

reasonable and acceptable agreement of the deep 

learning-based method and manual methods. The 

reported Dice similarity coefficient for brain enhanced 

tumor segmentation was mostly between 0.57 to 0.8 [22, 

24-28]. A few developed deep convolutional neural 

networks showed a Dice similarity coefficient greater 

than 0.8 [20, 29, 30]. For example, Zeineldin et al. [31] 

showed that U-Net architecture can be utilized for the 

segmentation of the tumor from Flair MR images with 

dice similarity index of 0.81 to 0.84. Havaei et al. [11] 

combined local and global 2D features extracted by a 

CNN for brain tumor segmentation. Kamnitsas et al. 

[32] used a 3D CNN to exploit multi-scale volumetric 

features which resulted in better segmentation 

performance than 2D CNNs. Isensee et al. [14] applied 3D 

U-Net in brain tumor segmentation with a carefully 

designed training process. An indispensable point is that 

voxel-wise class labels, determined by expert radiologists, 

are needed for training all deep learning algorithms which 

completely depends on the experience and accuracy of the 

expert radiologists, and is subject to human error. While 

physiological-based segmentation methods are more 

accurate and reliable for distinguishing the tumor region 

from the normal tissue without the need of any human 

interference. Indeed, angiogenesis and diffusion of 

contrast agent from intravascular to interstitial space in 

the tumor region are different from normal tissues. 

Therefore, there are some differences between the 

pharmacokinetic descriptive models of tumors and the 

normal tissues, and this point may be an effective method 

to determine the tumor extent. T1-weighted Dynamic 

Contrast-Enhanced MRI (DCE-MRI) provides the time 

information of contrast agent concentration and its 

distribution through the tissues [33]. DCE-MRI data 

analysis associated with the Nested Model Selection 

(NMS) concept [34] allows a reliable selection of the 

model and model parameters best fitted to the data. The 

NMS technique considers three different models with 

one, two, or three parameters extracted from the standard 

Toft’s equation [33] to describe the different 

pharmacokinetic conditions of enhancing tumor and 

normal tissues in brain studies. The brain tumor 

progression is accompanied by the formation of new 

blood vessels that are structurally and functionally 

abnormal with disrupted Blood-Brain Barrier (BBB) [35]. 

Therefore, the attributed pharmacokinetic model of the 

tumor region in the NMS technique would be completely 

different from normal tissues [34-37]. It is expected that 

the physiological tumor segmentation would be more 

precise than the methods only based on the image features, 

thus the automated tumor segmentation method may be a 

straightforward and reliable approach for clinical 

applications, if it adapts with physiologic segmentation. In 
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this study, the accuracy and precision of a trained deep 

convolution neural network have been investigated in 

comparison with the physiological segmentation of 

tumors based on the extended Toft’s model and the NMS 

technique. 

2. Materials and Methods  

2.1. Patient Data 

190 DCE-MRI Slices (256×256) from 25 

Glioblastoma Multiforme (GBM, High-Grade Glioma 

brain tumor type) patients were used in this study. The 

images were acquired before performing any 

treatment on these patients (treatment naïve patients). 

All available slices with an observable tumor were 

included in the study. A 3‐T MR system was used to 

acquire DCE‐T1 studies of all patients. Prior to the 

administration of contrast agent (CA, Magnevist), a 

driven equilibrium single pulse observation of T1 with 

variable flip angle (θ of 2°, 5°, 10°, 15°, 20°, and 25°) 

was acquired to determine the pre‐contrast T1. A 

three‐dimensional DCE‐T1 Spoiled Gradient Recalled 

Echo (SPGR) sequence was performed using the 

following parameters: 70 image phases; a temporal 

resolution of 5.035 s; flip angle of 20°; TE/TR ~ 

0.84/5.8 ms; matrix of 256 × 256; the field of view of 

240 mm2. 

2.2. Nested Model Selection and Tumor Region 

The Toft’s model is very popular in the pharmacokinetic 

analysis of DCE-MRI data. The extended Toft’s model 

describes the distribution of the contrast agent from the 

blood plasma into interstitial space (Equation 1). The 

parameters of the Toft's equation are blood plasma which 

is known as vp, the forward transfer constant as Ktrans, and 

inverse transfer constant as kep [33], 

Ct(t)=Ktrans ∫ e-kep(t-τ)Cp(τ)dτ
t

0

+vpCp(t)   (1) 

Where Ct is tissue contrast agent concentration and 

Cp is contrast concentration in blood plasma which is 

known as Arterial Input Function (AIF). In different 

pathologies such as normal or tumor tissue, the special 

status of the Toft’s equation can be observed as a 

Nested Model Selection (NMS) concept [34]. The 

NMS concept considers three distinct physiology 

conditions for different brain tissue pathologies and 

consequently extracts three different nested models 

from Toft’s equation to describe their pharmacokinetic. 

First Model of the NMS, Model 1, has one parameter 

which refers to normal brain tissues, where there is no 

detectable microvascular leakage of Contrast Agent 

(CA); Second Model of the NMS, Model 2, possesses 

two parameters which define pathologies that the CA 

leaks from the microvasculature; and third model of the 

NMS, Model 3, with three parameters fits pathologies 

having enough efflux of CA from intravascular space to 

interstitial space and then the CA re-enters the 

microvasculature from the interstitial space [34, 36]. 

Table 1 tabulates the aforementioned nested models and 

their parameters [23, 25, 26, 34]. The voxels located in 

the tumor area have enough leakage into the interstitial 

space due to severe BBB damage and then CA is 

allowed to return into the blood plasma. Therefore, the 

most suitable model for the fit to the dynamic time 

signal of tumor voxels is Model 3 of NMS.  

Pharmacokinetic analysis was performed on all voxels 

of 190 studied slices using Maximum Likelihood 

Estimator (MLE) and then the goodness of fit for every 

two competing models was assessed voxel-wised using 

Table 1. The number of parameters, symbol of each parameter, and the describing equation for three nested 

models [20, 22] 

NMS Name of parameters 
Symbol of 

parameter 
Equation 

Model 1 Blood Plasma vp 𝐶𝑡(t)=vp𝐶𝑝(t) 

Model 2 
Blood Plasma 

Forward Transfer Constant 

vp 

Ktrans 
𝐶𝑡(t)=Ktrans ∫ 𝐶𝑝(τ)dτ

t

0

+vp𝐶𝑝(t) 

Model 3 

Blood Plasma 

Forward Transfer Constant 

Inverse Transfer Constant 

vp 

Ktrans 

kep 
𝐶𝑡(t)=Ktrans ∫ e-kep(t-τ)𝐶𝑝(τ)dτ

t

0

+vp𝐶𝑝(t) 
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Likelihood Ratio Test (LRT) with Confidence Level of 

95%, and Degree of Freedom of 1 [15, 37, 38]. A 

normalized population-averaged Arterial Input Function 

(AIF) was used in the pharmacokinetic analysis. 

2.3. Deep Learning-Based Segmentation 

A trained Deep segmentation network (Deep-Net) 

based on Deeplabv3+ architecture using the weights 

of resnet18 pre-train Convolutional Neural Networks 

(CNN) was used to segment the tumor region for 190 

studied slices. The deep network was trained by 17288 

T1 weighted MR slices with Gadolinium-based 

contrast agents (T1-ce) of 293 high-grade glioma 

patients. The used dataset for training the Deep-Net 

was taken from the BraTS2020 dataset [17]. Manual 

segmentation of enhanced tumor, edema, and necrotic 

area, performed by a group of experienced radiologists 

(11 radiologists) was used in the training process [17]. 

Since the data of 190 slices used in this study was 

dynamic, and CA concentration was measured in 70 

temporal points for each slice, the 35th time point was 

chosen to be used as test data for the trained Deep-Net. 

The data was also normalized, resized and their 

contrast was adjusted to be appropriate as input for the 

deep CNN algorithm. 

2.4. Accuracy and Precision Evaluation 

To evaluate the similarity of the Deep learning-

based tumor segmentation with the physiological 

tumor segmentation, similarity indexes such as the 

Sørensen index (Dice similarity coefficient, DSC) [39, 

40], Jaccard Similarity Coefficient (JSC) [41], and 

Over Lap Coefficient (OLC) [42] were applied. 

2.4.1. Dice Coefficient 

The Sørensen index or, in other words, Dice 

Similarity Coefficient (DSC), [39, 40], which equals 

twice the number of voxels common in segmented 

regions by the Deep-Net, SEGDeep, and by the Nested 

Model Selection, i.e. SEGNMS, for tumor divided by 

the sum of the number of voxels in each segmented 

area, was calculated for all 190 studied slices 

(Equation 2). 

𝐷𝑆𝐶 =
2(𝑆𝐸𝐺𝐷𝑒𝑒𝑝 ∩ 𝑆𝐸𝐺𝑁𝑀𝑆)

𝑆𝐸𝐺𝐷𝑒𝑒𝑝 ∪ 𝑆𝐸𝐺𝑁𝑀𝑆

 (2) 

2.4.2. Jaccard Index 

The Jaccard Index [41], known as the Jaccard 

Similarity Coefficient (JSC), was also used in 

evaluating the similarities between the two segmented 

regions. The measurement emphasizes the similarity 

among finite sample sets and is formally defined as the 

size of the intersection divided by the size of the union 

of the segmented regions by each method (Equation 3). 

𝐽𝑆𝐶 =
𝑆𝐸𝐺𝐷𝑒𝑒𝑝 ∩ 𝑆𝐸𝐺𝑁𝑀𝑆

𝑆𝐸𝐺𝐷𝑒𝑒𝑝 ∪ 𝑆𝐸𝐺𝑁𝑀𝑆

 (3) 

2.4.3. Overlap Coefficient 

Overlap Coefficient [42] measures the similarity 

between two tumor segmented regions like the Jaccard 

index. It is defined as the intersection between two 

segmented areas divided by the smaller size of the two 

regions (Equation 4). 

𝑂𝐿𝐶 =
𝑆𝐸𝐺𝐷𝑒𝑒𝑝 ∩ 𝑆𝐸𝐺𝑁𝑀𝑆

min (𝑆𝐸𝐺𝐷𝑒𝑒𝑝 . 𝑆𝐸𝐺𝑁𝑀𝑆)
 (4) 

3. Results 

3.1. NMS Segmentation Results 

The nested model selection technique based on 

extended Toft’s equation was applied to all 190 DCE-

MRI slices of 25 GBM patients. The measured time- 

contrast concentration of each voxel is a function of its 

pharmacokinetic condition in DCE-MRI studies. The 

NMS technique assigns a Model to each voxel, based 

on the various pharmacokinetic conditions and different 

time-contrast concentration curves between the tumor 

and surrounding tissues. Figure 1 determines three 

examples of the experimental time-concentration of CA 

 

Figure 1. Three samples experimental time- CA 

concentration curves for Model 1 (Blue curve), Model 2 

(Green curve), and Model 3 (Red curve) 
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curves for Model 1 (blue curve), Model 2 (green curve), 

and Model 3 (red curve). 

Figure 2 demonstrates three sample slices of NMS 

brain maps generated for the three slices. In this figure, 

the first column shows the 35th time point of the DCE-

MR images of three slices from three different patients 

and the second column shows their corresponding 

generated NMS maps. In the NMS maps, the blue, 

green, and red colors are attributed to the first, second, 

and third models, respectively. As seen in this figure, 

the tumor region was specified by Model 3 (red color).  

However, the voxels on the major vessels were also 

identified as Model 3, this is acceptable since in major 

vessels the forward and backward transfer constants of 

CA are occurred through the blood plasma and could 

be considered equal. Figure 2 exhibits that the NMS 

technique can successfully outstand the tumor area 

from surrounding tissues by assigning the different 

Models to various pathologies. The voxels in the 

tumor area specified as Model 3 refer to the enhanced 

tumor which is separated from the necrotic area in the 

core of the tumor and edema around the enhanced 

tumor. 

3.2. Deep-Net Segmentation Results 

The Deep-Net was trained with a validation accuracy 

of 96.5% for segmentation of enhanced tumor, necrotic 

area, edema, and normal tissue and showed 88.7% 

performance ability for tumor region segmentation. In 

other words, there is an 11.3% chance of failure for the 

trained Deep-Net to provide a correct segment of the 

tumor, when it is applied to a new dataset. Thus, the 

trained Deep-Net has a generalizing error of ~0.11. The 

calculated Dice similarity coefficient of the employed 

Deep-Net on BraTS2020 dataset was obtained 0.77. 

Figure 3 illustrates the three examples of segmentation 

maps generated by Deep-Net for three sample slices.  

The first column shows the original brain input 

images as the deep CNN and the second column shows 

the brain image with segmented enhanced tumor 

regions by Deep-Net overlay on it (red color). As 

observed in this figure, the enhanced tumor is 

accurately segmented from surrounding tissues such 

as edema, necrosis, and normal tissues. Since the used 

data is T1 contrast-enhanced MRI and the CA first fills 

the major vessels and then distribute across the other 

 

Figure 2. The first column illustrates the original brain 

image for three sample slices from three different patients 

and the second column shows their corresponding 

generated NMS maps 

 

Figure 3. The first column implies the original brain 

image which was used as the test input of the deep 

CNN and the second column shows the predictive 

tumor region by red color over the brain image 
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brain tissue, thus the contrast concentration is high in 

the vessels especially in the large vessels. So in T1-

wieghted images, the large vessels appear with an 

enhanced contrast intensity similar to the tumor region 

and this leads to false positive results in network 

decision. The results indicate that the Deep-Net may 

incorrectly assigns tumor label for some voxels 

located on the major vessels in a few slices, as shown 

in Figure 4. Notably, the enhanced voxels on the major 

vessels are correctly labeled as normal tissue in most 

tested slices, similar to sample slices in Figure 3. 

Figure 4 also implies that in a few slices the Deep-Net 

may fail to detect the tumor region, which is due to its 

generalization error (0.11). 

3.3. Comparison of the Results of the Two 

Segmentation Methods 

Figure 5 compares the NMS tumor segmentation asa 

physiologic tumor segmentation with deep learning-

based tumor segmentation for nine exemplary slices. 

As demonstrated in the figure, the first column is the 

original brain image, the second is the NMS map 

generated from pharmacokinetic analysis of DCE-

MRI data, the third column is the predicted tumor 

region by the Deep-Net, the forth is the extracted 

tumor region from NMS map, the fifth is the extracted 

tumor region from Deep predicted map, the sixth is the 

overlay of two segmented tumor regions and the last 

column is the Dice (DSC), Jaccard (JSC) and Overlay 

(OLC) coefficients for the measurement of the 

overlapping information of two methods. As exhibited 

in this figure, the Deep-Net tumor segmentation is 

strongly in agreement with the tumor region delineated 

by the NMS technique. The obtained results imply that 

the trained Deep-Net and the NMS both reliably 

estimate the extent of the tumors for solid tumors 

(Figure 5-A,5-F, 5-H), ring- shaped tumors with 

necrotic core (Figure 5-B to 5-E and 5-L) or distributed 

tumors (Figure 5-G, 5-K). Figures 3 to 5 imply that 

according to the obtained similarity coefficients, the 

deep neural network used in this study can successfully 

adapt to the NMS segmented regions and distinguish 

the region and distribution of the tumor from the 

surrounding tissues in comparison with the NMS maps. 

However, in some cases, the Deep-Net has not been 

able to correctly detect the tumor, or in a few other 

slices, the voxels outside the tumor region especially 

the voxels on the large vessels are identified as tumors 

(see Figure 4). Furthermore, it is likely to misclassify 

the peritumoral regions as tumoral area through a 

wrong network decision (false positive). Most of these 

voxels on boundaries of the tumor are identified as 

Model 2 in the NMS technique, i.e. where the CA leaks 

to the interstitial space but is not allowed to return to the 

vasculature. Since, the Deep-Net classifies the regions 

based on the image intensity, it may incorrectly decide 

about these voxels as tumor region (false positive 

detection). It also seems that the boundaries of the 

tumor are more smoothed and uniformed in Deep-Net 

segmentation compared with the NMS technique. Also, 

in some cases a ring around the solid tumors is not 

detected as tumor region by the trained Deep-Net (false 

negative results), for example, see Figure 4 A-c. This 

issue may be due to generalization error and also the 

kind of the ground truth data (i.e. manual segmentation) 

used for training the Deep-Net, which was based on a 

region drawn by a group of radiologists.   

The average similarity coefficient for each of the 25 

patients was calculated and reported in Table 2. As can 

 

Figure 4. The first column implies the original brain 

image which was used as the test input of the deep 

CNN and the second column shows the generated 

NMS map for each slice, and the last column 

demonstrates the predictive tumor region by red color 

over the brain image 
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be seen in this table, the similarity between two 

methods for a few patients is not very high, but the 

similarity coefficient is above the 80% for a few other 

patients. However, the averaged similarity coefficients 

over the all test data is above 66% for all three 

calculated scores (DSC: 0.73±0.15, JSC: 0.66±0.17, 

and OLC: 0.71±0.15). Relatively high similarity 

indexes indicate a close agreement between the two 

methods, and therefore show tumor segmentation 

capability of the applied Deep-Net. 

4. Discussion 

During the recent years, the concept of segmentation 

or distinguishing the tumor from the surrounding tissue 

has been regarded as one of the most critical and 

challenging issues in the field of image processing and 

analyzing. In this study, a Deep-Net based on the 

Deeplabv3+ and layers of resnet18 was trained using 

BraTS2020 dataset for segmentation of the tumor 

region in brain MR images. The acceptable Dice 

similarity coefficient was obtained for the Deep-Net 

segmentation and the manually segmented MR images, 

used as the ground truth for network training. The 

trained Deep-Net showed a high accuracy on the 

validation data for the segmentation of the enhanced 

tumor, necrotic area, edema, and normal tissue.  

In the next step, the accuracy of this trained deep 

neural network in the segmentation of DCE-MRI images 

was compared with the NMS tumor segmentation, as a 

tissue pharmacokinetic-based segmentation.  

The pharmacokinetic-based segmentation methods, 

compared with manual segmentation are less 

 

Figure 5. Comparison of the segmented tumor 

regions by NMS and Deep-Net techniques and 

measured similarity indexes (DSC, JSC, and OLC) 

for nine sample slices 

 

 

 

 

 

 

 

Table 2. The average similarity coefficient calculated 

for each patient 

Patient # 

Dice 

Index 

(DSC) 

Jaccard 

Index 

(JSC) 

Overlay 

Index 

(OLC) 

1 0.49 0.36 0.49 

2 0.74 0.61 0.77 

3 0.80 0.69 0.80 

4 0.47 0.37 0.63 

5 0.92 0.84 0.93 

6 0.62 0.46 0.62 

7 0.87 0.79 0.85 

8 0.86 0.75 0.92 

9 0.79 0.65 0.76 

10 0.43 0.27 0.35 

11 0.64 0.47 0.53 

12 0.53 0.40 0.54 

13 0.57 0.40 0.49 

14 0.81 0.68 0.87 

15 0.81 0.67 0.76 

16 0.56 0.49 0.45 

17 0.93 0.88 0.91 

18 0.83 0.74 0.82 

19 0.69 0.53 0.59 

20 0.69 0.59 0.65 

21 0.79 0.65 0.78 

22 0.85 0.77 0.80 

23 0.84 0.82 0.72 

24 0.91 0.85 0.89 

25 0.88 0.79 0.83 

Averaged 0.73±0.15 0.66±0.17 0.71±0.15 
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dependent on human errors. A significant step in the 

pharmacokinetic analysis is the selection of the best 

model to fit the experimental data. According to the 

principle of parsimony, a model with fewer parameters 

has the best response if it describes the data behavior 

[34, 35]. Because of the presence of the noise in the 

data, the covariance effect of parameters on each other 

results in poor estimation for models with more 

describing parameters. So, it should be considered that 

the pharmacokinetic conditions of various pathologies 

are different and the best model with the least 

parameters should be selected to correctly estimate 

permeability parameters for each voxel [34, 35]. The 

nested model selection technique by assuming three 

different Models based on existing efflux and back 

flux of contrast agent between blood plasma and 

interstitial space can distinguish the different 

pathologies, and thus, NMS can be employed to 

physiologically segment the enhanced tumor region 

from its surrounding tissues. The NMS technique can 

be improved for other possible physiological 

conditions, such as necrotic areas in which there exists 

no contrast agent leakage into the extracellular 

extravascular space. For example, previous research 

[34] pointed out that Model 0 should be added to the 

NMS, describing the physiologic condition of necrotic 

tissues where the vasculature filing with CA is absent. 

As reported in the literature [16], the forward transfer 

constant in the peritumor edema is significantly higher 

than normal tissues. This property can be utilized to 

physiologically determine the edema boundaries in 

DCE-MRI data. Thence, it can be claimed that the use 

of the NMS technique with the DCE-MRI data for 

physiologic tumor segmentation is an efficient choice 

for providing the physiologic tumor labels as the gold 

standard in training a deep neural network for brain 

tumor segmentation. Of course, an unbiased and 

robust estimation method (such as utilized the MLE 

technique in this work [38]) is very necessary for 

relying on the NMS results [15, 43]. The results of this 

study and literature which used the NMS technique 

confirms that the tumor region can successfully be 

recognized in generated model selection maps in brain 

DCE-MRI studies [1, 34-37, 44, 45]. The findings of 

this pilot study confirm that the segmented tumor 

region by Deep-Net as a fast segmentation method is 

in close agreement with the determined tumor region 

in the NMS method, although the training process was 

performed using manually segmented images as the 

ground truth. Thus, the trained networks such as Deep-

Net in this study can be reliably used in segmentation 

software, especially if its training process is 

completely independent of human expertise.  

The supervised deep neural networks, which are 

usually used for image segmentation, are trained using 

images labeled by expert physiologists as ground truth. 

Manual segmentation of the tumor is a labor-based 

procedure and highly dependent on the expertise and 

experience of clinical radiologists and their slice-by-

slice decisions about the tumor margins.  Therefore, the 

training accuracy of such methods may be dependent 

on human expertise although this method provides the 

advantage of determination of different tumor regions, 

like necrotic tissue, enhancing tumor, non-enhancing 

tumor, and edema. The accuracy of the deep learning-

based method used in this study can be significantly 

improved if the network is trained by the NMS 

segmentation approach, which is completely automatic, 

without dependency on human experience, and 

decision. 

One of the main advantages of deep CNN 

segmentation over other methods is its fast, and 

automatic feature extraction due to its convolution layers 

[18]. This substantial advantage reduces the dependency 

of this method to image pre-processing procedures, 

which are sometimes performed manually or by applying 

approximations [18], thus the effect of human error on 

the result will be minimized.  

5. Conclusion 

The utilized deep learning approach in this work has 

been shown relatively accurate and reliable segmentation 

to be employed in clinical application. Using machine 

learning in clinical practice may facilitate and speed up 

the segmentation process, in addition to accurate, 

precise, and automate segmentation. Therefore, if an 

artificial neural network such as Deep-Net is supposed to 

be used in clinical software, it would be better to train it 

via a set of the data and ground truth labels that are 

completely independent of any human errors. Since 

training the neural networks with the manual methods as 

ground truth is a little dependent on the radiologists 

determining the tumor regions, it may cause a 

dependency on the human expertise and accuracy. 

Besides, the training process needs to be performed just 

once and then the trained network can be used for fast 
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clinical experiment analysis. Thus, it is proposed that a 

deep neural network is first trained by a set of DCE-MRI 

data, and then the trained network is used more 

confidently in clinical practice for other imaging 

modalities such as T1 contrast-enhanced (T1-ce) or 

Fluid-attenuated inversion recovery (FLAIR) MR 

imaging. Utilization of the DCE-MRI sequence and 

employing the NMS segmentation approach as the gold 

standard in the training process make a fully automated 

training process for the network which is completely 

independent of human errors. 
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