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Abstract 

Thyroid cancer is common worldwide with a rapid increase in prevalence across North America in recent years. 

While most patients present with palpable nodules through physical examination, a large number of small and 

medium-sized nodules are detected by ultrasound examination. Suspicious nodules are then sent for biopsy 

through fine needle aspiration to determine whether the nodule is malignant. Since biopsies are invasive and 

sometimes inconclusive, various research groups have tried to develop computer-aided diagnosis systems aimed 

at characterizing thyroid nodules based on ultrasound scans. Earlier approaches along these lines relied on 

clinically relevant features that were manually identified by radiologists. With the recent success of Artificial 

Intelligence (AI), various new methods using deep learning are being developed to identify these features in 

thyroid ultrasound automatically. In this paper, we present a systematic review of state-of-the-art on Artificial 

Intelligence (AI) application in sonographic diagnosis of thyroid cancer. This review follows a methodology-

based classification of the different techniques available for thyroid cancer diagnosis, from methods using feature-

based models to the most recent deep learning-based approaches. In this review, we reflect on the trends and 

challenges of the field of sonographic diagnosis of thyroid malignancies and potential of computer-aided 

diagnosis to increase the impact of ultrasound applications on the future of thyroid cancer diagnosis. Machine 

learning will continue to play a fundamental role in the development of future thyroid cancer diagnosis 

frameworks. 

Keywords: Artificial Intelligence; Computer Aided Diagnosis; Classification; Deep Learning; Medical 

Ultrasound Analysis; Segmentation; Thyroid. 
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1. Introduction  

The incidence of thyroid cancer has increased at an 

alarming rate in the United States with 52,070 cases 

diagnosed in 2019, out of which 2,170 cases resulted in 

death [1]. It is the most common cancer in women aged 

between 20 and 34 [1]. The corresponding numbers in 

Canada are equally significant with the Canadian Cancer 

Statistics estimating that 8,200 Canadians (6100 women 

and 2100 men) would be diagnosed with thyroid cancer 

resulting in 230 deaths in 2019 [2]. The incidence of 

thyroid cancer has steadily increased from 1970, with the 

most substantial increase in middle-aged women [3]. 

Thyroid cancer was the fifth most common cancer in 

Iranian women [4] and World Health Organization 

estimated that 3,963 Iranians (3,075 women and 888 men) 

were diagnosed with thyroid cancer in 2018 [5].  

Ultrasound (US) is a fast, safe and inexpensive 

imaging technique that can provide a complete 

visualization of thyroid nodules. Imaging is generally 

performed in both transverse and sagittal orientation 

using ultrasound probes in the 7-15 MHz range. Thyroid 

nodules have several distinguishable characteristics on 

ultrasound such as shape, size, echogenicity (brightness) 

and echotexture (composition). For example, features 

such as microcalcification or taller-than-wide nodule 

shape can be predictors of malignancy, whereas 

spongiform appearance can be representative of benign 

case [6]. 

The critical challenge in image aided thyroid nodule 

diagnosis and reporting of thyroid nodules is the extraction 

of optimal sets of features from ultrasound images that 

differentiate malignant from benign nodules. In order to 

standardize the reporting of thyroid nodules, American 

College of Radiology introduced a Thyroid Imaging, 

Reporting, and Data System (TIRADS) [7]. The goal of 

TIRADS is to provide standardized recommendations for 

the management of thyroid nodules on the basis of well-

defined clinical features for every lesion. TIRADS 

identifies six categories for a given nodule: composition, 

echogenicity, shape, size, margins and echogenic foci. 

Based on the scores of each of these features, the nodule is 

classified as benign, minimally suspicious, moderately 

suspicious or highly suspicious of malignancy. Various 

studies have reported increased agreement among users 

while using TIRADS. 

A parallel approach aimed at reducing the variability in 

thyroid nodule reporting is based on Computer-Aided 

Diagnosis (CAD) systems that usually categorize nodules 

as malignant or benign. These systems are mostly trained 

on retrospectively collected biopsy data and generally aim 

to reduce false positives that would otherwise result in 

unnecessary biopsies and over-diagnosis [8].  

In this paper, we review various Artificial 

Intelligence (AI)-based CAD systems that have been 

proposed for thyroid ultrasound nodule analysis, 

including segmentation [16, 17, 19, 20, 31, 33, 34, 35, 

37, 49, 62], detection [25, 29, 36, 38, 39, 51, 60, 61] and 

classification [21, 26, 28, 30, 50, 54-58]. Earlier 

reviews have focused on specific methods such as 

feature-based [9], deep learning [10], linear [11] and 

non-linear [12] approaches (see Table 1).  

Table 1. Overview of review articles in diagnosis of thyroid 

Article Year Study Purpose 
Imaging 

Modalities 

Number of 

Papers 

Acharya et al. [9] 2014 
Summarizing studies on malignancy 

detection 
US 57 

Khachnaoui et al. [10] 2018 
Summarizing deep learning-based studies 

on thyroid diagnosis 
US 8 

Sollini et al. [11] 2018 
Summarizing studies on texture analysis 

with and without CAD 

US 

CT 

MRI 

PET 

66 

Verburg et al. [12] 2019 
Meta-analysis study for US classification of 

thyroid cancer 
US 10 
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We aim to provide a broader perspective in our 

discussion and compare the above-mentioned 

approaches to one another. Our review also includes 

more recent publications in each of these approaches. 

This paper presents, for the first time, a systematic 

review of the existing literature on sonographic 

diagnosis of thyroid nodules, which covers both 

classical and deep learning methods. 

Figure 1 shows the histogram of the papers introducing 

novel machine learning-based techniques for thyroid 

nodule diagnosis. Inclusion and exclusion criteria are 

summarized in Table 2. In this survey, we focus on the 

methodological aspects of those works. We propose a 

structured analysis of the different approaches used for 

ultrasound-based thyroid tissue quantification. The paper 

is organized as follows. Section 2 presents an overview of 

the parameterization models for thyroid ultrasound nodule 

analysis. In Section 3, we will discuss the main findings of 

previous works, limitations, challenges and future trends 

that are specific to thyroid US images. Conclusions are 

presented in Section 4.  

2. Review of Methodological Approaches 

for Thyroid Ultrasound Analysis 

The aim of this section is to provide a structured 

reference guide for the different techniques of thyroid 

ultrasound analysis from a methodological point of view. 

All these works share a common goal: using CAD for 

thyroid parameterization. Figure 2 shows the general 

block diagram of a CAD system for sonographic diagnosis 

of the thyroid cancer. 

At first, some preprocessing steps such as rescaling 

pixel intensities and n’oise reduction [18, 31] are 

performed and Region-Of-Interest (ROI) is selected 

from every US image. Then, feature extraction approach 

is applied [21, 26, 28, 30, 50, 54-58]. Finally, thyroid 

gland or nodule region is segmented [16, 17, 19, 20, 31, 

33, 34, 35, 37, 49, 62] so that prediction about nodule 

malignancy can be performed [25, 29, 36, 38, 39, 51, 60, 

61]. To find relevant literature sources, PubMed and 

Scopus search engines were utilized using the query 

string: (a) “artificial intelligence” or “deep learning” or 

“segmentation” or “detection” and (b) “thyroid”. 

The last search was conducted on 30th of 

September, 2020. The search produced 997 results 

from search queries. Titles and abstracts were 

reviewed to determine whether they were suitable for 

 

Figure 1. Publications on sonographic diagnosis of thyroid per year based on PubMed and Scopus search engines 

Table 2. Inclusion and exclusion criteria 

Inclusion criteria Exclusion criteria 

(a) Published between 

2009 and 2019. 

(a) Studies that utilized 

imaging modalities other 

than US. 

(b) Peer-reviewed 

article. 

(b) Studies that focused 

only on case reports. 

(c) Available in full-text.  
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this review. We adopted a set of inclusion and 

exclusion criteria (see Table 2). The articles were 

downloaded, and the titles, abstract and methods 

sections were reviewed in order to verify that the 

articles met the aforementioned criteria. Overall, our 

review was aimed at describing recent artificial 

intelligence achievements in sonographic diagnosis of 

thyroid nodules.  

Based on the papers surveyed, we identified 2 major 

categories: 1) clinical features-based models; 2) machine 

learning-based models; and several other sub-categories 

of methods. 

2.1. Clinical Features-Based Models 

Figure 3 shows an example of an image of the 

thyroid gland obtained by ultrasound. As can be 

appreciated, the correct interpretation of ultrasound 

images requires an expert radiologist. Zahang et al. 

[13] performed malignancy detection based on both 

conventional US and Real-Time Elastography (RTE). 

A set of clinical features, i.e., echogenicity, margins, 

internal composition, aspect ratio, vascularity, hypoechoic 

halo, calcifications and real-time elastography grade were 

fed to nine different conventional classifiers. It was 

concluded that random field classifier based on US 

and RTE features outperformed other classifiers. Xia 

et al. [14] utilized ReliefF feature selection to select the 

most discriminative sonographic features. Selected 

features such as shape, composition, echogenicity, 

calcification, vascularity and margin were fed into 

Extreme Learning Machine (ELM), Support Vector 

Machine (SVM) and neural network. In another 

research [15], sonographic features such as age, nodule 

size, gender, texture, nodule echogenicity, internal 

composition, sphericity and calcification were fed into 

statistical classifiers to differentiate malignant thyroid 

nodules. 

2.2. Machine Learning-Based Models 

Several promising machine learning-based models 

were proposed for sonographic diagnosis of thyroid 

cancer. Based on the papers surveyed, we identified 2 

major categories: 1) classical features-based models; 

2) Deep learning models, as discussed below.  

2.2.1. Classical Features-Based Models 

The use of classical features has been extensively 

studied in a variety of applications, including automatic 

segmentation of thyroid and nodules, thyroid cancer 

detection and classification. Their ability to integrate 

knowledge about location, size and shape of the thyroid 

organ or nodule has led to some of the promising 

segmentation [16–20] and detection methods [14, 21, 

22]. Early classical features-based frameworks used 

discriminative statistical and texture features, i.e., 

wavelet transformation [23, 24], histogram feature [20], 

Block Difference of Inverse Probabilities (BDIP) and 

Normalized Multiscale Intensity Difference (NMISD) 

features [20] and co-occurrence matrix [23]. Then, 

feature selection techniques, i.e., minimum Redundancy 

Maximum Relevance (mRMR) [25] and T-test [26] were 

utilized to select those features which contribute most to 

 

Figure 2. Block diagram of a typical CAD system for 

sonographic diagnosis of thyroid cancer 

 

Figure 3. Transverse US image showing a thyroid 

nodule in the right thyroid lobe and adjacent anatomical 

structures 
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the model. The selected feature set was fed to classifier, 

i.e., SVM [14, 21, 23, 25–28], Random forest [13, 17, 

21] , neural network [13, 14, 24] or Adaboost [13, 23]. 

These approaches can be divided into thyroid or nodule 

segmentation and thyroid cancer detection, as discussed 

below. 

2.2.1.1. Thyroid and Nodule Segmentation 

Several methods for automated segmentation of 

thyroid or nodules were proposed in the literature. 

Illanes et al. utilized a combination of wavelet texture 

extraction and parametrical modelling for US thyroid 

segmentation [16]. China et al. [17] developed an 

algorithm based on iterative random walks solver and 

gradient vector flow based interframe belief propagation 

technique to segment thyroid, lumen and external elastic 

laminae. Koundal et al. [18] proposed Spatial 

Neutrosophic Distance Regularized Level Set method 

based on Neutrosophic L-Means clustering to segment 

thyroid nodules. Later, they used Neutrosophic 

Nakagami Total Variation and small rectangular region 

extraction as pre-processing steps [29] to improve the 

segmentation results. Multi-organ segmentation of 

thyroid, carotid artery, muscles and trachea was 

performed by Narayan et al. [19] using speckle patch 

similarity estimation. Prochazka et al. [21] trained 

Radial Basis Function (RBF) neural network to classify 

each block of US image into thyroid gland and non-

thyroid gland pixels. 

2.2.1.2. Thyroid Cancer Detection and 

Classification 

The use of classical features has been extensively 

studied for thyroid cancer detection. Two threshold 

binary decomposition was utilized in [21] for patch 

based feature extraction. The extracted features were 

fed into random forest and SVM classifiers. Yu et al. 

[22] developed a framework based on region-based 

active contours and texture features extraction. The best 

performance was achieved by combining Artificial 

Neural Networks (ANN) and SVM. In other work, 

Gabor features were extracted from high resolution US 

images [25]. Locality sensitive discriminant analysis 

was utilized for feature space reduction. The selected 

features were fed into SVM, K-Nearest Neighbors 

(KNN) and Multi Layer Perceptron (MLP) classifiers. 

Wavelet transformation was utilized as feature 

extraction method in several studies [23, 24]. In another 

study, different linear and nonlinear machine learning 

algorithms were evaluated for classification of thyroid 

nodules [30]. 

2.2.2. Deep Learning Models 

Deep neural networks are representation learning 

methods which extract features from input data and 

use these features to perform machine learning tasks 

such as segmentation or detection. These approaches 

can be divided into thyroid or nodule segmentation 

and thyroid cancer detection, as discussed below. 

2.2.2.1. Thyroid and Nodule Segmentation 

Poudel et al. [31] compared the performance of four 

popular segmentation methods, i.e., active contour 

without edges, graph cut, pixel based classifier and 

random forest classifier with 3D U-net [32] on Opencas 

thyroid dataset [33]. They concluded that 3D U-net 

outperforms other methods in terms of accuracy. 

Several deep learning architectures were utilized for 

nodule segmentation in the literature. Zhou et al. [34] 

proposed mark-guided U-net [35] for segmentation of 

thyroid nodules. Four landmark points corresponding 

to the major and minor axes of a nodule were 

determined manually to guide the training and 

inference of U-Net. A deep Convolutional Neural 

Network (CNN) framework with multiple intermediate 

layers was introduced in [36] for thyroid nodule 

segmentation. The proposed CNN contains 15 

convolutional layers and two pooling layers. The main 

drawback of the proposed approach is that some thyroid 

nodules with complicated back-ground cannot be 

accurately segmented. An 8-layer fully convolutional 

network was proposed in [37] for thyroid nodule 

segmentation. The proposed framework outperformed U-

net on the local test dataset. Kumar et al. [62] presented a 

novel multi-output convolutional neural network 

algorithm for automated segmentation of  thyroid nodules, 

cystic components, and thyroid gland from clinical 

ultrasound B-mode scans. The performance of the 

proposed algorithm was slightly higher for malignant 

compared to benign thyroid nodules. The main 

drawback is that it fails to segment very small cystic 

components. 
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2.2.2.2. Thyroid Cancer Detection and 

Classification 

Several deep learning based frameworks were 

proposed by different groups of scientists in the recent 

years. A research group evaluated the accuracy of 

thyroid cancer diagnosis using deep learning [12]. 

Authors utilized the dataset from three different 

Chinese hospitals and concluded that deep learning 

approach resulted in slightly inferior sensitivity and 

substantially improved specificity. Li et al. [39] 

proposed a deep learning approach inspired by faster 

R-CNN [38] for thyroid papillary cancer detection. 

Using layer concatenation strategy, more detailed 

features of low resolution US images were extracted. 

An end-to-end detection network based on integrating 

YOLOv2 [40] and Resnet v2-50 [41] was employed in 

[42]. A retrospective, multicohort, diagnostic study 

using ultrasound images sets from three hospitals in 

China was performed in [43]. The CNN model was 

developed by ensembling Resnet50 [44] and 

Darknet19 [45] models. Song et al. [46] proposed a 

deep learning framework based on Inception-V3 

network model [47] for diagnosis of thyroid nodules. 

The model was trained on a small local dataset, which 

consists of cropped nodules by a clinician. Two pre-

trained CNN models, i.e., “imagenet-vgg-verydeep-

16” and “imagenet-vgg-f”, were used in thyroid 

nodule malignancy detection [48]. To train the CNN 

with their local data, the ROIs were extracted by a 

radiologist from each US image. Abdolali et al. [59] 

proposed a novel deep neural network architecture for 

automated detection of thyroid nodules. The proposed 

model can facilitate analysis of thyroid ultrasound 

scans. However, it cannot handle some cases with 

small thyroid nodules with lower malignancy risk. In 

another research, inception-v4 CNN architecture was 

employed for tumor detection of the thyroid and 

salivary glands [60]. This study demonstrated that the 

proposed architecture could aid pathologists in automated 

tumor detection. Xia et al. [61] proposed an improved 

faster R-CNN based detection method of thyroid nodule. 

The improved faster R-CNN outperformed faster R-CNN 

in terms of quantitative measures. 

3. Discussion 

Our review of thyroid diagnosis techniques from 

US images has shown that accurate interpretation of 

ultrasound images is based on clinical feature-based 

models. However, recent advances in artificial 

intelligence have introduced efficient and flexible 

machine learning techniques applied to the analysis of 

thyroid US images. Machine learning will continue to 

play a fundamental role in the development of future 

thyroid cancer diagnosis frameworks. In this section, 

we discuss the applications of artificial intelligence in 

sonographic diagnosis of thyroid cancer, as well as the 

limitations and opportunities in this growing field.  

3.1. Analysis by Reported Results and Main 

Findings 

Several CAD systems for sonographic diagnosis of 

thyroid cancer have been developed, from clinical 

feature-based systems to machine learning-based 

systems (See supplementary file for a detailed list of 

the publications reviewed in this paper). In this 

section, we compare the previous works based on the 

reported results. For nodule segmentation, several 

methods [18, 34, 37, 49] achieved Dice scores higher 

than 90%, which indicates the efficiency of the 

proposed methods. The best performance was 

achieved using Spatial Neutrosophic Distance 

Regularized level set method based on Neutrosophic 

L-Means clustering [18]. For thyroid segmentation, 

several succesful methods [16, 19, 20, 31] achieved 

Dices score higher than 85%. Squeeze box filter [31] 

was developed to reduce speckle noise while 

preserving or enhancing edge information. Chang et 

al. [18] proposed a framework based on Haar Wavelet 

features and RBF neural network to classify each 

block of images into thyroid gland and non-thyroid 

gland. Adaptive Weighted Median Filter was utilized 

for noise reduction. They achieved mean Dice score of 

96.52% for thyroid segmentation. Several groups 

utilized deep learning or classical features for thyroid 

nodule classification. In a recent study, spatial domain 

features based on deep learning and frequency domain 

features based on Fast Fourier transform were combined 

for classifying the input thyroid images into either benign 

or malign cases [50]. The best classification accuracy 
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was reported using multi-task cascade VGG-16 model 

[51].  

The main limitations of previous works are discussed 

below. 

3.2. Limitations, Challenges and Future Trends 

During the last 2 decades, sonographic imaging of 

the thyroid gland was the most valued imaging 

method. However, there are several cases where the 

radiologist cannot distinguish between benign and 

malignant nodules with complete certainty. The 

reliability of diagnosis depends on the quality of US 

images and the expertise of the medical experts who 

interpret US images. Machine learning methods can 

help to extract features beyond human perception 

which leads to more effective characterizationof 

thyroid anatomy.  

Previous works focused on techniques for analysis 

of one nodule per US image. If one or more nodules 

are detected within the thyroid gland, it is not clear 

whether these techniques can be accurate enough. 

More experiments should be performed to evaluate the 

accuracy of previous techniques in such scenarios.  

The limited availability of annotated ultrasound 

data has been a problem in automated sonographic 

diagnosis of thyroid cancer. This limitation becomes 

particularly relevant when implementing CAD 

systems for thyroid nodule classification, where large 

datasets are needed to characterize location and 

texture of thyroid gland. The need for large datasets is 

essential for the development and validation of new 

CAD systems for thyroid. Moreover, this represents a 

major obstacle to realize the full potential of deep 

learning-based techniques. Although publicly 

available datasets with manual annotations of thyroid 

exist, the number of cases is limited to 134 images at 

best. Public data repositories, i.e., DDTI [33] and 

Opencas dataset [52], provide open access to detailed 

manually-guided expert annotations of thyroid 

structure and nodules. Collection of a large 

comprehensive training dataset with size of 1000 per 

class [63] or at least ten times the number of weights 

in neural network [64] is critical to develop future 

CAD systems that are robust to pathology. 

4. Conclusion 

In this paper, we presented the first systematic 

review of CAD systems for sonographic diagnosis of 

thyroid cancer. The continuing progress of machine 

learning have favored the development of complex 

and comprehensive models for sonographic diagnosis 

of thyroid nodules. As shown in this survey, the 

automatic parameterization of thyroid has been 

approached from different perspectives (e.g. 

detection, segmentation and classification), using 

various methodologies. The categorization of 

approaches in this paper provides a reference guide to 

the current techniques available for the analysis of 

thyroid US images. We have also indicated current 

challenges and future opportunities in CAD systems 

for analysis of thyroid US images. New efficient 

machine learning models should embed the 

anatomical context inherent to the thyroid gland to 

provide the essential accuracy for clinical practice. 
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