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Abstract 

Purpose: The purpose of this study is estimating and comparing the three different dimensions of the EEG and 

studying the trials variability for two auditory and visually oddball tasks in the healthy subjects. They include 

regional as the region of the brain, longitudinal as the repetition of the stimuli, and functional as whole curve 

of Evoked Related Potential (ERP), dimensions.  

Materials and Methods: The sample size is seventeen, with six females, in this three-trial study with standard 

and target stimuli per task. The dataset was downloaded from the internet and preprocessed. The Hybrid 

Principal Component Analysis (HPCA) decomposed the ERPs and estimated eigen components of three 

dimensions. The 95% Bayesian credible sets and trial effects as random effects of the first eigen component of 

each dimensions studied with the Generalized Additive Mixed Model (GAMM). 

Results: The p-values of the interaction effects between time and stimuli, repeats and stimuli and regions and 

stimuli are <0.05 for three dimensions, except in auditory task of longitudinal dimension and in visual task of 

regional dimension that are >0.05. The p-value of trial effects are <0.05 and for auditory task in the longitudinal 

dimension is borderline.   

Conclusion: The HPCA methodology decompose the time-domain ERPs to the functional-longitudinal and 

regional dimensions. The first eigencompments capture the most variations of every dimensions and we study 

the behavior of three-dimensions with them. We conclude that the repeating of the stimuli has a positive effect 

on the visual tasks. We also study the variability between trials with GAMM that are statistically significant. 

Keywords: Electroencephalography; Functional Data Analysis; Bayesian Data Analysis; Attention; Evoked 

Related Potential. 
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1. Introduction  

The standard statistical multivariate models such as 

Independent Component Analysis (ICA), Principal 

Component Analysis (PCA), etc. were used for analyzing 

the Electroencephalography (EEG) datasets [1]. They 

work with the summary of statistics like averages on all 

Evoked Related Potential (ERP) on each sensor and 

sometimes on the whole brain or only the amplitude and 

latency of the waves. The summary statistics pool the 

information and destroy some aspects of the dataset. For 

example, the averaging along each ERP on the sensors 

destroys the longitudinal dimension, the effects of 

repeating the stimuli, meanwhile averaging along each 

sensor destroys the region of the brain dimension. But the 

recent advances in the statistical methods, Functional 

Data Analysis (FDA), consider the underlying curves of 

data and the derivatives of the functions [2]. We can 

count the Bayesian fully Spatio-temporal multivariate 

autoregressive time series models [3], Bayesian 

Functional data analysis [4], the modified functional 

PCA [5], the multi-dimensional FPCA [6], and Hybrid 

PCA (HPCA) [7] among them. They consider the ERP 

as curves in the analysis and extract some new effects 

such as spatial, regional, longitudinal, etc. from them. 

The P300 ERP was studied for more than 50 years 

[8] for detecting concealed information and deception 

[9], their role in the auditory [10], emotions [11], 

visually task  [12], rapid statistical learning, memory, 

and novelty processing with two subcomponents P3a 

for novelty and distracting novelty and  P3b for target 

detection [13] and its relation to the physical activity 

and cardiorespiratory [14], their role in the language 

comprehension [15] and its development by age [16]. 

Many Brain-Computer Interfaces (BCI) [17] and EEG-

fMRI papers for studying internal attentions [18] 

considered this phenomenon.   

In this study, we analyze the EEG datasets from an 

EEG-fMRI study which was gathered and published for 

understating and exploring the mechanism of attention in 

the brain with two tasks; Auditory and Visually Oddball 

tasks [19-23]. First, we estimate the longitudinal, regional, 

and functional effects, second, we calculate the 95% 

Bayesian credible set among three trials and finally we 

investigate the stimuli and trial effects with a generalized 

additive mixed model [7]. 

2. Materials and Methods  

2.1. Dataset 

The dataset is an EEG-fMRI [21] experiment to 

study the internal attentions in the brain with 17 

participants (6 females, mean age is 27.7 years). There 

are three trials and two tasks for each experiment 

including auditory and visual stimuli. And there are 

two stimuli in each task (each has 125 stimuli); 

standard stimuli that must be ignored (80% most of the 

time) and target stimuli in which participants must 

push the button to the responde (most of the time 

20%). 

The auditory task includes standard stimuli (390 Hz 

tone) and target stimuli (laser gun sound). The visual 

task includes standard stimuli (small green circle on 

isoluminant grey background, 1.5-degree visual angle) 

and target stimuli (large red circle on isoluminant grey 

background, 3.45-degree visual angle). The stimulus 

duration is 200 ms and the ITI (inter-trial-interval) is 

2-3 seconds which is uniformly distributed. The first 

two stimuli are standard. 

The sampling rate is 1000 Hz with 49 channels. The 

custom cap configuration were bipolar electrode pairs 

and twisted leads. We use the re-referenced electrode 

space. Therefore, there are 1 to 34 electrodes. The 

dataset is downloaded from the openNeuro website 

[24].  

2.2. Data Preparation 

We clean each trial dataset separately by removing 

the artifacts, filtering, epoching, and using baseline 

correction with R, version 4.0.2 [25], which was 

validated with EEGLAB Toolbox outputs [26]. We 

average the signals from sensors based on their 

locations on the scalp head into six regions: Frontal, 

Central, Occipital, Parietal, Left Temporal and Right 

Temporal. We estimate the ERP wave for each 

participant in each trial for each region of the brain. 

2.3. Statistical Modeling 

2.3.1. The HPCA Decomposition 
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We assume that 𝑌𝑑𝑖𝑞(𝑟, 𝑡, 𝑠) is an ERP wave, which 

contains regional-longitudinal-functional-trial ERP 

wave for subject 𝑖, 𝑖 = 1, … ,17, from group 𝑑, 𝑑 = 1 

(𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑆𝑡𝑖𝑚𝑢𝑙𝑖), 2 (𝑇𝑎𝑟𝑔𝑒𝑡 𝑆𝑡𝑖𝑚𝑢𝑙𝑖), in region 

𝑟, 𝑟 = 1, … , 6, at time t, 𝑡 ∈ [0,800]𝑚𝑠 for the 

functional part and s,  𝑠 ∈ [1,25] for the longitudinal 

part, and  𝑞, 𝑞 = 1,2, and 3 for trial number. The 

HPCA was used to estimate the regional, longitudinal, and 

functional effects for each trial separately, as stated in [7]: 

𝑌𝑑𝑖𝑞(𝑟, 𝑡, 𝑠) =  𝜇𝑞(𝑟, 𝑡) + 𝜂𝑑𝑞(𝑟, 𝑡, 𝑠) +

∑ ∑ ∑ 𝜉𝑑𝑖𝑞,𝑘𝑙𝑚𝑣𝑑𝑘𝑞(𝑟)𝜙𝑑𝑙𝑞(𝑡)𝜓𝑑𝑚𝑞(𝑠) +∞
𝑚=1

∞
𝑙=1

𝑅=6
𝑘=1

𝜖𝑑𝑖𝑞(𝑟, 𝑡, 𝑠)  

The 𝜇𝑞(𝑟, 𝑡) is an overall mean function. 𝜂𝑑𝑞(𝑟, 𝑡, 𝑠) 

is group-region shifts. 𝜉𝑑𝑖𝑞,𝑘𝑙𝑚 is the subject-specific 

score. The 𝑣𝑑𝑘𝑞(𝑟) are common eigenvectors for the 

regional marginal covariance matrix. The  𝜙𝑑𝑙𝑞(𝑡) and 

𝜓𝑑𝑚𝑞(𝑠) are common eigenfunctions for functional and 

longitudinal marginal covariance surfaces. Therefore, we 

have the following estimations for each trial: 

Trial 1:   �̂�𝑑𝑖1(𝑟, 𝑡, 𝑠) = �̂�1(𝑟, 𝑡) + �̂�𝑑1(𝑟, 𝑡, 𝑠) +

∑ ∑ ∑ 𝜉𝑑𝑖1,𝑘𝑙𝑚�̂�𝑑𝑘1(𝑟)�̂�𝑑𝑙1(𝑡)�̂�𝑑𝑚1(𝑠) +∞
𝑚=1

∞
𝑙=1

𝑅=6
𝑘=1

𝜖𝑑𝑖1(𝑟, 𝑡, 𝑠) 

Trial 2:    �̂�𝑑𝑖2(𝑟, 𝑡, 𝑠) = �̂�2(𝑟, 𝑡) + �̂�𝑑2(𝑟, 𝑡, 𝑠) +

∑ ∑ ∑ 𝜉𝑑𝑖2,𝑘𝑙𝑚�̂�𝑑𝑘1(𝑟)�̂�𝑑𝑙2(𝑡)�̂�𝑑𝑚2(𝑠) +∞
𝑚=1

∞
𝑙=1

𝑅=6
𝑘=1

𝜖𝑑𝑖2(𝑟, 𝑡, 𝑠) 

Trial 3     �̂�𝑑𝑖3(𝑟, 𝑡, 𝑠) = �̂�3(𝑟, 𝑡) + �̂�𝑑3(𝑟, 𝑡, 𝑠) +

∑ ∑ ∑ 𝜉𝑑𝑖3,𝑘𝑙𝑚�̂�𝑑𝑘1(𝑟)�̂�𝑑𝑙3(𝑡)�̂�𝑑𝑚1(𝑠) +∞
𝑚=1

∞
𝑙=1

𝑅=6
𝑘=1

𝜖𝑑𝑖3(𝑟, 𝑡, 𝑠) 

The number of eigenvector and eigenfunctions are 

estimated by the total fraction of variance explained 

(𝐹𝑉𝐸𝑑𝐾𝑀𝐿𝑞) which is greater than 90% of FVE. In this 

study, we only estimate and use the first eigenfunctions 

of functional dimeson (�̂�111(𝑡), �̂�211(𝑡), �̂�112(𝑡), 

�̂�212(𝑡), �̂�113(𝑡), �̂�213(𝑡)) with 𝑡 ∈ [0,800]𝑚𝑠 and 

longitudinal dimension (�̂�111(𝑠), �̂�211(𝑠), �̂�112(𝑠), 

�̂�212(𝑠), �̂�113(𝑠), �̂�213(𝑠)) with 𝑠 ∈ [1,25] and the first 

eigenvector of the regional dimension (�̂�111(𝑟), �̂�211(𝑟), 

�̂�112(𝑟), �̂�212(𝑟), �̂�113(𝑟), �̂�213(𝑟)) for each stimulus and 

in each trial, because most of the total variations are 

explained by the first of them. 

2.3.2. The 95% Bayesian Confidence Bands 

We estimate the 95% Bayesian confidence bands for 

the first eigenfunction of functional and longitudinal 

dimensions in three trials. Therefore, we have an 

estimate based on three trials and their variabilities. For 

simplicity of the analysis, we do not consider the time 

correlation within curves and between trials in this 

calculation and we assume that observations distribute 

independently. This may cause to estimate of the 

higher variance in the estimations.  

The (𝑡𝑖, �̂�𝑖), {�̂�𝑖 , 1 ≤ 𝑖 ≤ (800 × 3) = 2400} are 

estimated eigenfunction values for functional dimension 

and {𝑡𝑖, 1 ≤ 𝑖 ≤ 2400,1 ≤ 𝑡 ≤ 800} are observed times in 

each stimulus. And (𝑠𝑗 , �̂�𝑗), {�̂�𝑗, 1 ≤ 𝑗 ≤ (25 × 3) = 75} 

are estimated eigenfunction values for longitudinal 

dimension and {𝑠𝑗 , 1 ≤ 𝑗 ≤ 75,1 ≤ 𝑠 ≤ 25} are repeats in 

each stimuli [27].  

The first eigenfunction of the functional dimension 

model is: 

�̂�𝑖|𝜷, 𝒖, 𝜎𝜀
2~  𝑁(𝛽0 + 𝛽1𝑡𝑖 + ∑ 𝑢𝑘𝑧𝑘(𝑡𝑖)

𝐾
𝑘=1 , 𝜎𝜀

2)  

(ind) 
𝒖|𝜎𝑢~ 𝑁(0, 𝜎𝑢

2𝐼) 

𝛽0, 𝛽1~𝑁(0, 𝜎𝛽
2) 

𝜎𝑢~ 𝐻𝑎𝑙𝑓 − 𝐶𝑎𝑢𝑐ℎ𝑦 (𝐴𝑢) 

𝜎𝜀~ 𝐻𝑎𝑙𝑓 − 𝐶𝑎𝑢𝑐ℎ𝑦 (𝐴𝜀) 

The 𝛽0, 𝛽1, 𝜎𝑢, 𝜎𝜀 are random effects and the 

hyperparameters 𝜎𝛽 > 0, 𝐴𝑢 > 0, 𝐴𝜀 > 0 =  105. 

The first eigenfunction of the longitudinal dimension 

model is: 

�̂�𝑗|𝜷, 𝒖, 𝜎𝜀
2~  𝑁(𝛽0 + 𝛽1𝑠𝑗 + ∑ 𝑢𝑘𝑧𝑘(𝑠𝑗)𝐾

𝑘=1 , 𝜎𝜀
2)  

(ind) 
𝒖|𝜎𝑢~ 𝑁(0, 𝜎𝑢

2𝐼) 

𝛽0, 𝛽1~𝑁(0, 𝜎𝛽
2) 

𝜎𝑢~ 𝐻𝑎𝑙𝑓 − 𝐶𝑎𝑢𝑐ℎ𝑦 (𝐴𝑢) 

𝜎𝜀~ 𝐻𝑎𝑙𝑓 − 𝐶𝑎𝑢𝑐ℎ𝑦 (𝐴𝜀) 

The 𝛽0, 𝛽1, 𝜎𝑢, 𝑎𝑛𝑑 𝜎𝜀 are random effects and the 

hyper-parameters 𝜎𝛽 > 0, 𝐴𝑢 > 0, 𝐴𝜀 > 0 =  105. 

We use the MCMC (Monte Carlo Markov Chain) 

method with 15000 iterations. The first 5000 of them 

are warm-ups and the thin factor is 2. The estimation 
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is done in RStan [28]. The MCMC samples were 

checked with four plots: A time series or a trace plot, 

a lag-1 plot, an autocorrelation function plot, and a 

kernel density estimation of the posteriors density 

function of parameters. Therefore, the 95% credible 

set for the first eigenfunctions of functional and 

longitudinal dimensions in three trials and each group 

was estimated.  

The first and second eigenvectors of the regional 

dimension were estimated by averaging over the three 

runs and plot against each other. The standard 

deviation of the three trials is also estimated.  

2.3.3. The Generalized Additive Mixed Models 

The Generalized Additive Mixed Model (GAMM) is 

a mixed model extension of the GAM and it can model 

the fixed and random effects together. We treated a 

group of stimuli as a fixed effect and trials as a random 

effect in the following models and used a thin plate 

regression spline for times and repeats in the functional 

and longitudinal dimensions, respectively [27]. 

The model of the first eigenfunction of functional 

effects is:  

𝜙1𝑖𝑗 = 𝑇𝑟𝑖𝑎𝑙𝑖 + 𝛽1(𝑡𝑖𝑗) × 𝑆𝑡𝑖𝑚𝑢𝑙𝑖𝑖 + 𝜀𝑖𝑗 

1 ≤ 𝑗 ≤ 800,     1 ≤ 𝑖 ≤ 3 

𝑇𝑟𝑖𝑎𝑙𝑖~𝑁(0, 𝜎𝑈
2)   (𝑖𝑛𝑑),  𝜀𝑖𝑗~𝑁(0, 𝜎𝑈𝜀

2 )    (𝑖𝑛𝑑) 

The model of the first eigenfunction of longitudinal 

effects is: 

𝜓1𝑖𝑗 = 𝑇𝑟𝑖𝑎𝑙𝑖 + 𝛽1(𝑠𝑖𝑗) × 𝑆𝑡𝑖𝑚𝑢𝑙𝑖𝑖 + 𝜀𝑖𝑗 

1 ≤ 𝑗 ≤ 25,     1 ≤ 𝑖 ≤ 3 

𝑇𝑟𝑖𝑎𝑙𝑖~𝑁(0, 𝜎𝑈
2)   (𝑖𝑛𝑑),  𝜀𝑖𝑗~𝑁(0, 𝜎𝑈𝜀

2 )    (𝑖𝑛𝑑) 

We also treated the region of the brains as a fixed 

effect. The model of the first eigenvector of longitudinal 

effects is: 

𝑣1𝑖 = 𝑇𝑟𝑖𝑎𝑙𝑖 + 𝛽1(𝑅𝑒𝑔1𝑖) + 𝛽2(𝑅𝑒𝑔2𝑖) +

𝛽3(𝑅𝑒𝑔3𝑖) + 𝛽4(𝑅𝑒𝑔4𝑖) + 𝛽5(𝑅𝑒𝑔5𝑖) +

𝛽6(𝑅𝑒𝑔6𝑖)+ 𝛽7(𝑅𝑒𝑔1𝑖) × 𝑆𝑡𝑖𝑚𝑢𝑙𝑖𝑖 + 𝛽8(𝑅𝑒𝑔2𝑖) ×

𝑆𝑡𝑖𝑚𝑢𝑙𝑖𝑖 + 𝛽9(𝑅𝑒𝑔3𝑖) × 𝑆𝑡𝑖𝑚𝑢𝑙𝑖𝑖 + 𝛽10(𝑅𝑒𝑔4𝑖) ×

𝑆𝑡𝑖𝑚𝑢𝑙𝑖𝑖 + 𝛽11(𝑅𝑒𝑔5𝑖) × 𝑆𝑡𝑖𝑚𝑢𝑙𝑖𝑖 + 𝛽12(𝑅𝑒𝑔6𝑖) ×

𝑆𝑡𝑖𝑚𝑢𝑙𝑖𝑖 + 𝜀𝑖𝑗  

1 ≤ 𝑖 ≤ 3 

𝑇𝑟𝑖𝑎𝑙𝑖~𝑁(0, 𝜎𝑈
2)   (𝑖𝑛𝑑),  𝜀𝑖~𝑁(0, 𝜎𝑈𝜀

2 )   (𝑖𝑛𝑑) 

The above models were fitted for the auditory and 

visual tasks with the GAMM function in the mgcv 

package [29] in R separately. The coefficients are 

estimated and the P-Values are reported. The log-

likelihood (𝑙𝑛(𝐿)), Akaike information criterion (AIC) 

(AIC = −2 ln(L) + 2p) and Bayesian Information 

Criteria (BIC) (𝐵𝐼𝐶 = −2 𝑙𝑛(𝐿) +  𝑝𝑙𝑜𝑔(𝑛)) were 

reported for model comparisons, where 𝐿 is the 

maximized likelihood function for the estimated model, 

𝑝 is the number of estimated parameters and 𝑛 is the 

number of observations.  

3. Results 

3.1. The HPCA and Their Credible Sets 

The HPCA decomposition of ERP waves for each 

stimulus in each task for three trials is extracted. The 

first eigenfunctions for functional and longitudinal 

dimensions and first and second eigenvectors for 

regional dimensions are estimated and their 95% 

Bayesian credible sets were reported. 

3.1.1. The Functional Dimensions 

The 95% credible set of the auditory task in the 

standard and target stimuli showed that the variability 

between trials in the standard stimuli is less than target 

stimuli. Thus the estimated credible set is narrower in 

the standard stimuli rather than target stimuli. There is 

a peak between 400 and 600 ms in the target stimuli. 

On the other hand, the visual tasks have two 

completely different patterns in the standard and target 

stimuli. The standard stimuli are almost flat but the 

target stimuli have a big peak between 400 and 600 ms 

(Figure 1). 

3.1.2. The Longitudinal Dimensions 

The standard stimuli in the Auditory have a wider 

95% credible set than target stimuli. But both 

estimated curves have a similar pattern.  

The visual tasks have two completely different 

patterns in the standard and target stimuli. The 

standard stimuli have a linear positive trend but the 

target stimuli have a smooth positive trend (Figure 2). 
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3.1.3. The Regional Dimensions 

The estimated mean ± standard deviation for three 

trials for the first and second eigenvectors for six 

regions of the brain was plotted against each other. In 

the auditory task with standard stimuli, the occipital 

and left temporal are far from each other and the other 

parts but in the target stimuli, these two regions are 

close to each other. But in the visual task, the pattern 

of different regions is not changing dramatically in the 

standard and target stimuli (Figure 3).  

 
Figure 1. The estimated 95% credible sets for three trials of first eigenfunctions of  functional effects (Top left): 

Auditory task and standard stimuli, (Top right): Auditory task and target stimuli, (Bottom left): Visually task and 

standard stimuli, (Bottom right): Visually task and target stimuli 

 

 
Figure 2. The estimated with 95% credible sets for three trials of first eigenfunctions of   longitudinal effects(Top 

left): Auditory task and standard stimuli, (Top right): Auditory task and target stimuli, (Bottom left): Visually task 

and standard stimuli, (Bottom right): Visually task and target stimuli 
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3.2. The GAMM Results 

The GAMM results include three-part, the fixed effect 

estimates, the random effects statistical significance and 

log-likelihood, AIC, and BIC. The model is estimated for 

two tasks separately. 

3.2.1. The Functional Dimensions 

The interaction between the fixed effects of time 

and stimuli is statistically significant for both tasks (P-

values are less than 0.05). The random effects, trial, 

are also statically significant for both tasks (P-values 

are less than 0.05) (Table 1). 

3.2.2. The Longitudinal Dimensions 

The interaction between fixed effects of repeats and 

stimuli is not statistically significant in the Auditory 

Task (P-values are not less than 0.05) and are 

statistically significant in the visually task (P-values 

are less than 0.05). The random effects, trial, are not 

significant for the Auditory (P-value: 0.06) but they 

are significant for the visual task (P-value: <0.00) 

(Table 2).  

3.2.3. The Regional Dimensions 

The fixed main effects include statistically 

significant brain regions (P-value less than 0.05) for 

both tasks and the main effect of the target stimuli is 

significant for auditory (P-value: <0.00) and is not 

significant for the visual tasks (P-value: >0.06). The 

interaction between target stimuli and the region of the 

brain is only significant for Occipital, Parietal, and 

Right Temporal (P-values < 0.05) for the auditory 

task. The random effects, trials, are significant for both 

tasks (Table 3). 

4. Discussion 

The first eigenfunctions of ERP waves for the 

auditory and visual tasks with standard and target 

stimuli are different from each other (Table 1). And the 

different trials produce different first eigenfunctions 

and are not statistically the same (Figure 1). The 

functional dimension of the ERPs have a complex 

structure and we cannot capture all important patterns 

with the first eigenfunctions. The difference between 

standard and target stimuli is observed. The first 

eigenfunction for the target stimuli captures the peak 

between 400-600 ms for the auditory task and between 

500-600 ms for the visual task. The auditory task with 

oddball target tasks showed a peak around 300-600 ms 

[30], two peaks between 200-400 ms and 600-800 ms 

[31], between 500-800 ms [32], around 200 ms and 500 

ms [18], around 400 ms [21]. The target stimuli with the 

visual oddball task have two peaks around 100-200 ms 

and 200-300 ms [31], between 500-800 ms [32], 

between 100-400 ms and 600-800 ms [18], around 200 

ms and 300 ms [33], between 200-400 ms for stimulus-

locked [22] window and around 400 ms [21]. 

Table 1. The ANOVA table for the first eigenfunction of the functional part by tasks 

Functional Part 

Task  AUD VIS 

Fixed 

Effect 

 Estimate P-Value Estimate P-Value 

Intercept 0.806 <0.001 0.465 0.0760 

Standard Stimuli × Time 1.125 <0.001 0.617 0.0196 

Target Stimuli × Time 1.651 <0.001 2.705 0.0000 

Random 

Effect 

 F-Value P-Value F-Value P-Value 

Trial 49.14882 <0.001 29.84901 <0.0001 

Model 

 Log-likelihood -3319.323 Log-Likelihood -5034.378 

 AIC 6652.645 AIC 10082.76 

 BIC 6697.984 BIC 10128.09 

The dependent variable is the first eigenfunction for the functional part. 
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The first eigenfunction of the longitudinal effects 

captures nearly all of the variations in these dimensions. 

In the auditory task, the longitudinal effects are not 

statistically significant (Table 2) and they have an 

almost zero-slop line pattern (Figure 2). It stated that the 

repeating of the stimuli does not have statistical effects 

on the ERPs. But in the visual task, the longitudinal 

effects are statistically significant (Table 2) and their 

values increase with repeating the stimuli both in the 

target and standard (Figure 2). The visual task is more 

complex than auditory tasks and participants need 

time and repeats to concentrate on them.  

The first and second eigenvectors for the regional 

dimensions for both auditory and visually did not 

change dramatically in standard and target stimuli 

(Figure 3). But the frontal, Occipital, Parietal, and 

Right Temporal regions changed in the target stimuli 

of the auditory task. In the auditory target stimuli, the 

frontal, some part of the central and right temporal 

[30], the right temporal and central [31], the frontal at 

Table 2. The ANOVA table for the first Eigenfunction of longitudinal part by tasks 

Longitudinal Part 

Task  AUD VIS 

Fixed 

Effect 

 Estimate P-Value Estimate P-Value 

Intercept -0.670 0.0154 -0.660 0.0075 

Standard Stimuli × Repeats -0.092 0.2182 0.425 0.0000 

Target Stimuli × Repeats -0.015 0.8410 0.264 0.0002 

Random 

Effect 

 F-Value P-Value F-Value P-Value 

Trial 2.52 0.06 20.45 <0.0001 

Model 

 Log-likelihood -153.707 Log-Likelihood -140.998 

 AIC 321.414 AIC 295.996 

 BIC 342.347 BIC 316.9291 

The dependent variable is the first eigenfunction for the longitudinal part.  

 

 

Figure 3. The estimated mean ± standard deviation for three trials of first and second eigenvectors of  regional effects 

(Top left): Auditory task and standard stimuli, (Top right): Auditory task and target stimuli, (Bottom left): Visually 

task and standard stimuli, (Bottom right): Visually task and target stimuli 
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200 ms to some part of the left and right temporal and 

occipital and parietal from 350 ms to 600 ms [32] and 

in the visual target stimuli, occipital [31], occipital and 

left temporal from 300 ms to the whole brain except 

some part of frontal at 450 ms [32], frontal at 225 ms 

to 250 ms [22] have higher values than other regions. 

One reason for the non-significance of regions in the 

visual tasks is that all regions are activated and the 

difference between regions are not statistically 

significant.  

The EEG data structure is complex and standard 

statistical methods cannot capture them. The HPCA 

methodology extracts functional, longitudinal, and 

regional dimensions simultaneously [7]. The between 

trial variability is another dimension that we introduce 

in this research and model them as random effects in 

the regular GAMM. The future direction of this 

research is to incorporate this dimension into the 

HPCA method and estimate its effect simultaneously. 

The Bayesian credible set is a useful method for EEG 

trials with a few numbers of trials to estimate the 

variability with the MCMC sampling techniques. 

There are different Bayesian algorithms, including the 

BUGS project (Bayesian inference using Gibbs 

sampling), Integrated and Nested Laplace 

Approximations (INLA) and we use the No-U-Turn 

sampler (a variant of Hamiltonian Monte Carlo) with 

RStan [28] which is very fast [34]. Another point for 

future research is by comparing different MC 

algorithms with EEG data. We use GAMM with the 

thin plate regression spline and random effects to 

model the between trial variability.  

5. Conclusion 

We conclude that the functional data analysis 

provides many statistical methods to analyze the EEG 

dataset by considering the underlying function of the 

curves. The HPCA can capture the functional-

longitudinal and regional dimensions and we also 

Table 3. The ANOVA table for the first eigenfunction of the regional part by tasks 

Regional Part 

Task  AUD VIS 

  Estimate P-Value Estimate P-Value 

Fixed 

Effect 

Intercept -0.584 < 0.00 -0.664 < 0.00 

Central 0.077 0.01 0.198 < 0.00 

Occipital 0.572 < 0.00 0.622 < 0.00 

Parietal 0.181 < 0.00 0.309 < 0.00 

Left Temporal 0.396 < 0.00 0.370 < 0.00 

Right Temporal 0.137 < 0.00 0.306 < 0.00 

Target Stimuli 0.080 < 0.00 0.032 0.60 

Target Stimuli ×Central -0.058 0.13 -0.025 0.77 

Target Stimuli × Occipital -0.095 0.02 -0.019 0.83 

Target Stimuli × Parietal -0.127 < 0.00 -0.029 0.74 

Target Stimuli × Left Temporal 0.068 0.08 -0.042 0.63 

Target Stimuli × Right Temporal -0.179 < 0.00 -0.036 0.67 

Random 

Effect 

 F-Value P-Value F-Value P-Value 

Trial 401.20 <.0001 88.95 <.0001 

Model 

 Log-likelihood 79.92 Log-likelihood 48.88 

 AIC -131.85 AIC -71.75 

 BIC -109.68 BIC -49.59 

The dependent variable is the first eigenfunction for the longitudinal part. The base region is frontal and the base 

stimuli is standard. 
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study the new dimension, trials with GAMM. We 

estimate the credible sets with the Bayesian data 

analysis. 

The different regions of the brain have not the same 

activity in these two tasks. The repeating of the stimuli 

has a positive effect on complex tasks such as visual 

tasks. The first eigenfunction of the functional effect 

cannot capture all variabilities of this dimension and 

we need more eigenfunctions to study N1, P1, N2, and 

P3. The between trial variability is statistically 

significant, and we suggest studying this effect to 

show the stability of the trials. Although this EEG-

fMRI data previously was analyzed [19-23, 35], the 

longitudinal effects within a trial were studied 

statistically [36, 37], and we study the between trials 

effects with random effects and estimate 95% 

Bayesian credible sets for the first time.  
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