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Abstract 

Purpose: Graph theory is a widely used and reliable tool to quantify brain connectivity. Brain functional 

connectivity is modeled as graph edges employing correlation coefficients. The correlation coefficients can be 

used as the weight that shows the power of connectivity between two nodes or can be binarized to show the 

existence of a connection regardless of its strength. To binarize the brain graph two approaches, namely fixed 

threshold and fixed density are often used.  

Materials and Methods: This paper aims to investigate the difference between weighted or binarized graphs in 

brain functional connectivity analysis. To achieve this goal, the brain connectivity matrices are generated 

employing the functional Magnetic Resonance Imaging (fMRI) data of Alzheimer's Disease (AD). After 

preprocessing the data, weighted and binarized connectivity matrices are constructed using a fixed threshold 

and fixed density techniques. Graph global features are extracted and a non-parametric statistical test is 

performed to analyze the performance of the methods.  

Results: Results show that all three methods are powerful in distinguishing the healthy group from AD subjects. 

The P-Values of the weighted graph is close to the fixed threshold method. 

Conclusion: Also, it is worthwhile mentioning that the fixed threshold method is robust in changing the threshold 

while the fixed density method is very sensitive. On the other hand, graph global measures such as clustering 

coefficient and transitivity, regardless of the method, show significant differences between the control and AD 

groups. Furthermore, the P-Values of modularity measure are very varied according to the method and the 

selected threshold. 

Keywords: Functional Connectivity; Correlation; Binary Graph; Weighted Graph; Functional Magnetic 

Resonance Imaging; Alzheimer’s Disease. 
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1. Introduction  

One of the main approaches in brain studies is to 

investigate the connectivities in the brain. In this 

regard, there are three different types of connectivities. 

Structural connectivity that emphasizes the anatomical 

connection in the brain, functional connectivity which 

studies the brain functions regardless of the order of 

communication, and effective connectivity that 

investigates brain function but pays attention to the 

causality of the connections [1]. In functional and 

effective connectivity analysis the communication 

among brain voxels is investigated. Also, it is possible 

to facilitate the time and computational cost by brain 

parcellation into Regions of Interests (ROI) based on 

different atlases [2].  

Functional Magnetic Resonance Imaging (fMRI) is 

a prevalent and non-invasive method that provides 

functional data of the brain. In an fMRI exam, the 

Blood Oxygen Level Dependent (BOLD) signals are 

recorded and they show the brain function based on 

Oxygen consumption [3]. The mathematical approach 

to assess the functional connectivity is to evaluate the 

correlation coefficient between the time-series of 

different ROIs or voxels. The most commonly used 

method is the Pearson Correlation Coefficient (PCC) 

[4].  

Functional connectivity analysis employing fMRI 

data is very common in literature [5]. Evaluation of the 

alterations of functional connectivity in Parkinson [6], 

Autism [7], Attention Deficit Hyperactivity Disorder 

(ADHD) [8] and, Bipolar [9] disorders are very 

prevalent in the literature. One of the most common 

disruptive illnesses of the nervous system is 

Alzheimer’s Disease (AD) and it is the sixth leading 

cause of death in the United States.  Although in the 

range of 2000 to 2017, deaths occur due to stroke, 

coronary illness, and prostate cancer growth 

diminished, revealed deaths from AD expanded by 

145% [10]. Studies show that the functional 

connectivity in dorsal and ventral systems is decreased 

by AD [11]. Also, the pattern of functional 

connectivity in insular regions changes [12]. On the 

other hand, a recent study reported increased 

functional connectivity after listening to music [13]. 

Several studies utilize functional connectivity to 

distinguish patients from healthy subjects [14-16]. 

Furthermore, a comparison of functional connectivity 

modification between normal aging and AD has been 

done [17]. Some studies employed other data such as 

structural medical images and combined the 

functional information to analyze AD [18]. 

Investigating the stages before AD called Mild 

Cognitive Impairment (MCI) is another field of 

research that is very common in the literature [19-21].   

While the functional connectivity is measured as 

PCC the results are numbers between -1 to 1. The 

magnitude shows the weight of connection and the 

sign corresponds to the direction [22]. Some of the 

results are fake due to the artifacts and noises. 

Furthermore, the weak connectivities are not reliable 

and cannot be considered as the real functional 

connectivity between two ROIs or voxels [23, 24]. 

Due to these reasons, some studies perform a 

sparsification process to eliminate weak and spurious 

correlations. There are two main approaches for 

implementing a sparsification process, including fixed 

threshold and fixed density. The main disadvantage of 

these techniques is that they use trial and error and are 

operator based [24]. Although there are lots of studies 

on functional connectivity analysis, the need for a 

practical comparison between different common 

methods for generating brain networks is felt. This 

study aims to evaluate the performance and the 

difference of fixed threshold, fixed density, and the 

weighted graphs in functional connectivity analysis. 

The brain graphs are made utilizing fMRI signals of 

AD patients through the aforementioned methods and 

compared by graph global measures and non-

parametric statistical test.  

The rest of the paper is organized as follows: in the 

materials and methods section, graph theory and brain 

functional network are introduced. Also, the binary 

and weighted graphs are presented. Then graph global 

measures are explained and finally the database and 

data preprocessing step are given. In the results 

section, the outcomes of non-parametric statistical 

tests are presented and the methods are compared. In 

the last section entitled ‘discussion’ the results are 

analyzed and the research is concluded. 
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2. Materials and Methods  

In this section, the data and tools are presented. The 

summary of the study is shown in Figure 1 as a 

flowchart. 

2.1. Data and Preprocessing 

The Alzheimer's Disease Neuroimaging Initiative 

(ADNI) database is used in this research [25]. A 3 

Tesla Siemens machine is used to collect the images 

[26]. The parameters of the functional recording data 

are the flip angle of 80 degrees, 3.3125 mm of slice 

thickness, 48 slices, and TR/TE of 3000/30 msec. 

Also, there are 140 functional volumes. Table 1 shows 

the demographic information. ADNI database 

assesses two scores, including Mini-Mental State 

Examination (MMSE) and Clinical Dementia Rating 

(CDR). They are two clinical examinations performed 

on all of the subjects (both healthy ones and AD 

subjects). They were performed for analysis and to 

assess the mental health of people. 

The preprocessing was performed through the Data 

Processing Assistant for Rs-fMRI (DPARSF) toolbox 

and Resting-State fMRI Data Analysis Toolbox 

(REST) [27].  

First of all, slice timing correction is performed. 

The last slice is used as the reference. Second, to 

correct head motion realignment is implemented. 

Employing the Montreal Neurological Institute (MNI) 

atlas the data are normalized. The smoothing is 

performed by employing a Gaussian filter with the 

Full Width at Half Maximum (FWHM) of 4 mm. Then 

voxel signals are passed through a bandpass filter 

(0.01-0.08 Hz). The Automated Anatomical Labeling 

(AAL) atlas [28] was used to extract the Regions of 

Interest (ROIs). AAL divides the brain into 116 

distinct ROIs. The average signal over all the voxels 

in an ROI makes the fMRI signals. 

Figure 1. The flowchart of the study 

2.2. Graph Theory and Brain Functional 

Networks 

In mathematics, graph theory is used to model 

complex networks. 𝐺 = (𝑉, 𝐸) is the symbol of a graph 

where 𝑉 indicates the vertices (nodes) and 𝐸 

demonstrates the edges of the graph. In brain networks 

Table 1. The demographic information of the data 

Group No. (Male/Female) Age Head Motion MMSE Score CDR Score 

AD (14/14) 74.9±4.9 0.32±0.09 mm 20.35±0.54 1.03±0.54 

CN (14/20) 74.1±4.3 0.22±0.14 mm 29.11±1.24 0.16±0.05 
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analysis the voxels or ROIs are nodes of the graph and 

functional connectivity is modeled as edges. PCC 

analysis is the most prevalent technique to compute 

functional connectivity [29]. The PCC is computed as 

follows: 

𝜌𝑥,𝑦 =
𝑐𝑜𝑣( 𝑥, 𝑦)

𝜎𝑥𝜎𝑦

 (1) 

Where 𝜎𝑥 and 𝜎𝑦 correspond to the standard 

deviation of the variable (signal) 𝑥 and 𝑦 , 

respectively. 

In the weighted graphs, the magnitude of the 

correlation is considered but in the binary graph, the 

availability of links is considered. There are two main 

approaches to binarize a graph, one of which is 

thresholding. In this method, the operator sets a 

threshold manually, the correlations below the 

threshold turn into zero and the other ones turn into 

one. Evidently, the result relies on the threshold and 

varies as the threshold changes. Finding the optimal 

threshold is usually done by trial and error. Another 

approach to binarize a graph is fixed density. In this 

method, a determined fraction of edges remain 

connected and the others are eliminated [24, 30, 31].  

This study aims to generate the brain graphs based 

on the three mentioned methods (weighted, fixed 

density, and fixed threshold) and evaluate them by 

graph measures and a statistical test in fMRI signals. 

In Figure 2, three types of functional connectivity 

matrix are illustrated. 

As it is demonstrated in Figure 2, the elements of a 

weighted matrix are between 0 to 1 but in binary 

matrices, they can be only zero and one. Also, if a 

weighted matrix is binarized by fixed threshold or 

fixed density method the result is varied. Besides 

changing the threshold or density, it changes the 

results again.  

2.3. Graph Measures 

After constructing brain networks, there is a feature 

extraction step. The definition and formula of 

extracted features are listed below. The brain 

functional integration and segregation are 

demonstrated in the features below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3.1. Degree 

The total number of the edges related to a hub 

shows the degree of that node. 

2.3.2. Efficiency (EFF) 

The shortest path length is the minimum distance 

between the vertices. The average efficiency of a 

graph is 𝐸(𝐺) =
1

𝑛(𝑛−1)
∑

1

𝑝(𝑥,𝑦)𝑥≠𝑦∈𝐺  where 𝑝(𝑥, 𝑦) is 

the shortest path length between 𝑥 and 𝑦. The global 

 

 

 

Figure 2. A functional connectivity matrix. A 

weighted matrix (up). A binary matrix which is 

sparsed by threshold 0.5 (Middle) and a binary 

matrix which is sparse by density 50% (buttom) 
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efficiency is defined as the average of the inverse 

shortest path length: 

𝐸𝑔𝑙𝑜𝑏(𝐺) =
𝐸(𝐺)

𝐸(𝐺𝐼𝑑𝑒𝑎𝑙)
 (2) 

Where 𝐺𝐼𝑑𝑒𝑎𝑙 corresponds to a fully connected 

graph of 𝑛 hubs. The local efficiency is an efficiency 

that is computed on a subgraph of the neighbors. The 

formula is [32]: 

𝐸𝑙𝑜𝑐(𝐺) =
1

𝑛
∑ 𝐸(𝐺𝑥

𝑥∈𝐺

) (3) 

2.3.3. Clustering Coefficient (CC) 

It is computed according to the triangles around 

vertices. This measure quantifies the tendency of the 

hubs to make the clusters. In the graph theory, triples 

are three nodes connected by two or three edges which 

are called closed or open, respectively. Three closed 

triplets make a triangle. The CC formula is as follows 

[33]: 

𝐶 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑜𝑠𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠
 (4) 

2.3.4. Modularity 

The tendency of a graph to be divided into 

communities is called modularity. It can be calculated 

as: 

𝑀 =
1

𝑙
∑ [𝐴𝑥,𝑦 −

𝑘𝑥𝑘𝑦

𝑙
]

𝑥,𝑦

𝛿𝑥,𝑦 (5) 

Where, 𝑙 is the number of links. 𝐴𝑥,𝑦 is the 

connectivity matrix and if the two nodes are from one 

subgraph the 𝛿𝑥,𝑦 is zero otherwise, it is equal to one. 

Also, 𝐾𝑥 and 𝐾𝑦 show the degree of vertices 𝑥 and 𝑦, 

respectively [34].  

2.3.5. Transitivity 

Transitivity is similar to the CC. It is defined 

according to the relative triangles. The relation is [34]: 

𝑇 =
3 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑠 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠
 (6) 

It is worthwhile to mention that all the processings 

were implemented in Matlab 2018a software. The 

preprocessing step was performed employing the 

DPARSF toolbox. For graph measures computations 

the Braph toolbox [35] was utilized and for the rest of 

the analysis, several scripts have been written. Please 

note that the Braph toolbox computations are based on 

the above-mentioned formulas. 

2.4. Statistical Test  

After evaluating the graph measures the comparison 

between groups has to be done. In order to perform 

this issue, the non-parametric permutation test has 

been employed. Note that this statistical test was 

considered no hypotheses about the distribution of 

data and is very common and reliable in neuroscience 

studies [36]. In the permutation test, subsets of the data 

were selected randomly and the statistical test was 

performed in every subset (bootstrapping). The 

resampling was performed 1000 times to make the 

results more reliable.  

3. Results 

Based on the fMRI time series the functional 

connectivity matrices are generated. First of all, the 

weighted matrices are calculated. Secondly, the 

matrices are sparsed by fixed threshold and fixed 

density methods. In order to evaluate the effects of the 

threshold, different thresholds are investigated. Table 

2 shows the results of the non-parametric permutation 

test of the weighted graphs between the two groups 

(AD group vs. healthy subjects). 

 

 

 

 

 

 

 

 
 

 

 

As it is shown in Table 2, based on weighted graphs, 

all features except modularity and degree demonstrate 

Table 2. Results of the statistical test in the form of 

P-Values. The significance level is 1%. The boldface 

P-Values are significantly different 

Feature P-Values 

Degree 0.0223 

Global Eff. 0.0020 

Local Eff. 0.0021 

Clustering 0.0026 

Transitivity 0.0032 

Modularity 0.0283 
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significant changes between the AD group and the 

control group. Although the weighted graphs consist 

of strong and low correlations (signals and noises) 

together, based on the graph measures and non-

parametric permutation test’s result (Table 2), 

weighted graphs are appropriate tools to discriminate 

against the groups. As they are very crowded graphs 

they are not efficient in visualizing the brain functional 

connectivity (only visualizing). In comparison 

between a weighted graph and a sparse graph, the 

weighted one has more number of links while a sparse 

one has lost several links (based on the selected 

threshold). Accordingly, the computational cost of a 

weighted graph is high due to the full connected nature 

of the graphs. 

The weighted graphs are sparsed with different 

thresholds from 0.3 to 0.7. Table 3 shows the results 

of the statistical analysis of the fixed threshold 

method. The results are in the form of P-Values and 

the numbers below the significance level (1%) are 

bold. 

As illustrated in Table 3, based on different 

thresholds, the results of statistical tests vary 

considerably. Only the clustering feature shows 

significant changes in both groups in every threshold.  

Among the different thresholds, the 0.4 has the best 

result and all of the features are significantly different 

between the AD and control groups. Also, it can be 

concluded from Table 2 that there is no stable pattern 

in P-Values variation while the threshold is changed. 

In comparison between the fixed threshold method 

and weighted graphs, it can be concluded that the 

threshold makes some features, including degree and 

modularity significantly different. Other studies such 

as [37] reported that the modularity feature is 

diminished in AD patients and is significantly 

different from healthy subjects. According to this 

research, the fixed threshold method may provide 

more reliable results and also the computation cost is 

less due to less crowded graphs. For instance, the 

variation of clustering features in both groups based 

on different thresholds is demonstrated in Figure 3. 

The variation pattern of other features is almost the 

same. As Figure 3 depicts, the variation pattern in both 

groups is approximately similar and there is no 

threshold where the results are significantly different. 

Figure 3. Variation of clustering feature (average) in 

both groups as the threshold changes from 0.3 to 0.7 

According to Table 4, regardless of the density, 

clustering, and transitivity features are significantly 

Table 3. Results of the non-parametric statistical test in terms of P-Values. Each column corresponds to a specific 

threshold (graph sparsification threshold). The significance level is 1%. The boldface P-Values show significant 

differences (P-Values≤0.01) 

 Threshold 

Features 0.3 0.4 0.5 0.6 0.7 

Degree 0.0111 0.0049 0.0018 0.0007 0.0004 

Global Eff. 0.0105 0.0082 0.0108 0.0157 0.0084 

Local Eff. 0.006 0.0065 0.0138 0.0342 0.0081 

Clustering 0.0046 0.0017 0.0016 0.0054 0.0090 

Transitivity 0.0019 0.001 0.0008 0.0017 0.0212 

Modularity 0.0191 0.0057 0.0042 0.0012 0.0035 

 



 A Comparative Study of the Effect of Weighted or Binary Functional Brain Networks in fMRI Data Analysis  

 
Copyright © 2020 Tehran University of Medical Sciences   165  FBT, Vol. 7, No. 3 (2020) 159-168  

different. Among the different densities, 40% and 50% 

have a better performance. In order to compare the 

fixed threshold and fixed density methods, the 

variation of the clustering measure is plotted in Figure 

4. As depicted in Figure 4, the trend of variation is 

almost the same as the fixed threshold. As the density 

grows (fewer sparsifications) the feature increases. 

The modularity feature shows no significant changes 

as the density varies. The trend of modularity feature 

is also demonstrated in Figure 5. The average value of 

both groups is too close, therefore based on the 

statistical test there are no significant changes. 

Besides, as density grows, the distance between 

groups becomes less and the P-Value of the statistical 

test becomes larger according to Table 4. The fixed 

density result is almost the same as weighted graphs. 

No significant changes in modularity and only in a 

specific density does the degree feature show 

significant changes. 
 

To compare the fixed threshold and fixed density 

results, the boxplot of P-Values is depicted in Figure 6. 

As Figure 6 shows, the variation of P-Values in the 

fixed density method is much greater than the fixed 

density threshold method and it can be concluded that 

the fixed density method is more sensitive to the 

selection of density.  

Only in clustering and transitivity measures, are the 

results of two methods similar and it can be concluded 

that regardless of the method and the selected borders 

these features are significantly different in the AD 

group and healthy subjects. In other words, they are  

Figure 5. Variation of modularity feature (average) in 

both groups as the density changes from 30% to 70% 

proper measures to discriminate amongst the groups. 

Also, the P-Values of weighted graphs are illustrated 

in Figure 6 and they are closer to the fixed threshold 

method. Some measures, including clustering and 

transitivity in all three methods show significant 

 

Figure 4. Variation of clustering feature (average) in 

both groups as the density changes from 30% to 70% 

 

Table 4. Results of the statistical test. Each column corresponds to a specific density. The numbers of P-Values 

(graph sparsification threshold). The significance level is 1%. The boldface P-Values show significant differences 

(P-Values≤0.01) 

 Remain Density 

P-Value 70% 60% 50% 40% 30% 

Degree 0.1560 0.2530 0.0978 0.0034 0.0586 

Global Eff. 0.2005 0.0791 0.0003 0.0005 0.0001 

Local Eff. 0.001 0.0015 0.0038 0.0184 0.4487 

Clustering 0.0015 0.0014 0.0017 0.0031 0.0064 

Transitivity 0.0008 0.0008 0.0011 0.0014 0.0030 

Modularity 0.1798 0.0963 0.1911 0.0954 0.0446 
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changes but the rest of the features depend on the 

method and the selected threshold.  

 

 

 

 

 

 

 

 

 

4. Discussion  

In brain function studies, connectivity graphs are 

often generated, employing the Pearson correlation 

coefficient. Then, there is an option to utilize them as 

weighted matrices or make them binary by 

sparsifications. The common approaches to have 

sparse graphs are fixed threshold and fixed density 

techniques. When the existence of an edge is 

considered the binary graphs are used and when the 

weight of the edges is of importance the weighted 

graph is considered. This paper aims to compare the 

weighted and binary graphs and also evaluate the fixed 

density and fixed threshold techniques. Accordingly, 

the fMRI data from the ADNI database is used. fMRI 

signals correspond to age-matched healthy subjects 

and AD patients. After performing the preprocessing 

step, the functional connectivity graphs are created 

employing the Pearson method. The graphs are 

weighted graphs and are also sparse due to the above-

mentioned methods utilizing different thresholds. 

Subsequently, graph global measures are computed 

and a non-parametric permutation test is performed as 

statistical analysis. In the weighted analysis, the 

degree and modularity measures show no significant 

changes. As the weighted graphs are often fully 

connected matrices the average degree in both groups 

is the same and, apparently, there are no significant 

changes. Measures such as clustering, transitivity, and 

efficiency show a significant difference and match 

previous studies in the literature [38]. In fixed 

threshold graphs, unlike the weighted graphs, the 

modularity measure shows significant changes. Since 

AD disrupts brain functional integration it is expected 

that the modularity is different with respect to healthy 

subjects and AD patients. In fixed density analysis the 

modularity shows no significant changes. The results 

of the weighted graphs and fixed density techniques 

are similar. In all three methods, the clustering 

coefficient and transitivity show significant 

differences in all thresholds. It can be concluded that 

AD affects these features enormously because 

regardless of the methods they demonstrate significant 

changes. On the other hand, the modularity measure is 

very sensitive to the method of analysis. Among the 

different thresholds, the result of the fixed threshold 

method is robust and approximately the same but the 

fixed density is very sensitive to the selected 

threshold. Consequently, if the goal of a study is to 

discriminate against some groups, different methods 

and different thresholds should be examined to find a 

better method and the optimal threshold. It is 

worthwhile mentioning that, the binary methods are 

faster and have less computational costs because the 

graphs are more sparse in comparison to weighted 

graphs. On the other hand, in neuroscience studies, 

these methods are not very suitable because the 

procedure does not consider the physiological and 

pathological conditions of the brain. 
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