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Abstract 

Purpose: Automated segmentation of abnormal tissues in medical images is considered as an essential part of 

those computer-aided detection and diagnosis systems which analyze medical images. However, automated 

segmentation of abnormalities is a challenging task due to the limitations of imaging technologies and complex 

structure of abnormalities, including low contrast between normal and abnormal tissues, shape diversity, 

appearance inhomogeneity, and the vague boundaries of abnormalities. Therefore, more intelligent segmentation 

techniques are required to tackle these challenges. 
 

Materials and Methods: In this study, a method, which is called MMTDNN, is proposed to segment and detect 

medical image abnormalities. MMTDNN, as a multi-view learning machine, utilizes convolutional neural 

networks in a massive training strategy. Moreover, the proposed method has four phases of preprocessing, view 

generation, pixel-level segmentation, and post-processing. The International Symposium on Biomedical Imaging 

(ISBI)-2016 dataset is used for the evaluation of the proposed method. 
 

Results: The performance of the proposed method has been evaluated on the task of skin lesion segmentation as 

one of the challenging applications of abnormal tissue segmentation. Both qualitative and quantitative results 

demonstrate outstanding performance. Meanwhile, the accuracy of 0.973, the Jaccard index of 0.876, and the 

Dice similarity coefficient of 0.931 have been achieved. 
 

Conclusion: In conclusion, the experimental result demonstrates that the proposed method outperforms state-of-

the-art methods of skin lesion segmentation. 
 

Keywords: Medical Imaging; Abnormal Tissues Segmentation; Convolutional Neural Networks; Multi-View 

Learning; Artificial Neural Networks; Multi-View Massive Training Deep Neural Network. 
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1. Introduction  

Medical image segmentation is the task of 

delineating structures of interest in medical images, 

either manually or automatically. Segmentation of 

medical images has broad applications, including 

locating tumors and pathologies, studying anatomical 

structures, and measuring tissue volume. Among 

these, delineation of tissue abnormalities is one of the 

major application areas of medical image 

segmentation. As monitoring and analysis of abnormal 

tissues are crucial for optimal treatment, accurate 

segmentation of these abnormalities is required. In 

contrast to the automated segmentation of abnormal 

tissues, manual segmentation is commonly time-

consuming, cumbersome, error-prone, and subjective. 

Therefore, the automatic segmentation of these tissue 

abnormalities is preferred. 

Automated segmentation of abnormal tissues in 

medical images is a challenging and sophisticated task 

in both Computer-Aided Detection (CADe) and 

Computer-Aided Diagnosis (CADx) systems [1]. 

There are many cases of complexity, which mainly 

roots in the complex structure of the body tissues, 

abnormalities, and also limitations of imaging 

technologies. These complexities include 

inhomogeneity, partial volume effect, the existence of 

noise and artifacts, low contrast between normal and 

abnormal tissues, shape diversity, and the fuzzy border 

of abnormalities. With these circumstances, 

sophisticated methods are required to tackle 

mentioned difficulties; and consequently, accurate 

segmentation of abnormalities in medical images.  

Representation learning [2] methods are a candidate 

solution for challenging real-world problems, 

including segmentation of abnormal tissues in medical 

images and understanding their contents as well. The 

reason for the prosperity of representation learning 

methods is that they cover more general priors of real-

world intelligence. These priors include smoothness, 

multiple explanatory factors, the sparsity of features, 

transfer learning, independence of features, natural 

clustering and distributed representation, semi-

supervised learning, and hierarchical organization of 

features [3]. As describing the texture of medical 

images and segmentation of abnormalities based on 

the texture contents are among difficult tasks of 

computer vision, the power of representation learning 

is employed to address related issues.  

There are many representation learning techniques 

which act as end-to-end learning machines capable of 

segmenting abnormalities in medical images. In such 

techniques, the features are learned directly from the 

training images as a part of the training process. These 

methods, which mainly root in the neural networks, 

are fallen into two main categories of Massive 

Training Artificial Neural Networks (MTANNs) and 

Convolutional Neural Networks (CNNs). With many 

similarities, the main difference between these two 

techniques is the place of the convolution operator. 

The convolution operator is outside of the network for 

the MTANN family while this operator is inside the 

network for CNNs [4].  

Although MTANNs are firstly proposed for the 

reduction of false positives in computerized detection 

of lung nodules in CT images [5], they are capable to 

perform various image processing and pattern 

recognition tasks thanks to the ability to learn useful 

features from the training data. As Figure 1 depicts, 

both input and output of a typical MTANN are images. 

Training input images of MTANN are overlapped sub-

regions of the original image, and the teacher image, 

which serves the network as desired output is an image 

as the same size as the training sub-regions. However, 

the main burden of learning is carried by the fully 

connected neural network component of MTANN. 

This component takes a gray level sub-image and 

produces a single output corresponding to the central 

pixel of that sub-image. Concerning the fact that the 

input of MTANN is a sub-image, in order to process 

and judge all pixels of the input image, the trained 

MTANN must slide over the input image. This sliding 

process is called convolution. In contrast to the CNN, 

where convolution is controlled inside the network 

structure, this process is controlled outside of the 

network structure in MTANN. 

Some representative abnormal tissue segmentation 

methods that are based on MTANN are segmentation 

of Multiple Scleroses (MS) lesions [6], [7], detection 

of polyps in CT colonography [8], [9], and other tasks 

related to segmentation and detection of abnormal 

tissues [10], [11], [12]. 
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The leading representative CNN-based studies for 

segmenting tissues include segmentation of brain 

tumors [13], [14], segmentation of bladder in CT 

images [15], skin lesion segmentation [16], [17], MS 

lesion segmentation [18], segmentation of white 

matter hyper-intensities [19], and segmentation of soft 

tissues in digital mammograms [20].  

In conclusion, both methods based on MTANN and 

CNN have many similarities. More concretely, both 

network architectures attempt to learn discriminative 

features directly from the data. Although CNNs are 

very good for analysis of visual data because of their 

excellent representation capabilities, they are 

suffering from some limitations, including long 

training time and need of massive amounts of training 

data. In contrast, the methods based on MTANN need 

less training example which is very beneficial in the 

medical image analysis methods, where always proper 

training data are rare. In another perspective, MTANN 

may suffer from the fact that the data could not be 

represented as well as CNN. So, it is desired to have 

networks that gain benefits from both architectures. In 

other words, the networks with high representation 

capabilities and trainable based on a small amount of 

data are desired.  

This study aims to propose a pixel-based method for 

the segmentation of abnormalities in medical images 

called Multi-view Massive Training Deep Neural 

Network (MMTDNN). The proposed method relies 

mostly on the multi-view capabilities of 

Convolutional Neural Networks (CNNs), which 

attempts to describe sub-images that surround all  

 

 

 

 

 

 

 

 

 

 

 

pixels in a typical medical image in different 

perspectives and scales [21]. 

The multi-view concept allows to various global, 

regional, and local aspects of images which clue the 

segmentation be considered. Having CNNs with 

multi-view capability brings some challenges to the 

training of the proposed method. In order to tackle 

these challenges, besides the proper design of network 

architecture, enormous amounts of data are needed. 

The massive training concept in the proposed method 

deals with the generation of too many sub-images 

from the currently accessible image data for network 

training.  

The remainder of this paper is organized as follows. 

The proposed MMTDNN, as a segmentation method 

of abnormal tissues, is presented in section 2. 

Experimental results are presented and discussed in 

section 3. Finally, the paper is concluded in section 4. 

2. Materials and Methods  

2.1. Data-Set 

In order to evaluate the performance of the 

proposed method, a benchmark and publicly available 

data-set of skin lesions known as ISBI-2016 [22] is 

used. Because of significant variations in the intensity, 

color, shape, size, and texture of both lesion and 

normal areas, the segmentation of these lesions is 

challenging. This data-set consists of 900 and 379 

training and testing images, respectively. Both 

 

Figure 1. Architecture and training method of MTANN for detection of lung nodules in CT images [5] 
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training and testing images are provided with the 

ground truth generated by experts. Given the fact that 

these images are collected from various centers and 

devices; and the data-set contains lesions with various 

irregular shapes, diverse backgrounds, low contrast 

between lesion and non-lesion areas, inhomogeneous 

appearance, hair artifacts, color charts, and fuzzy 

borders, they are appropriate for robust evaluation of 

automated lesion segmentation methods. 

2.2. Method  

In this section, the proposed MMTDNN for the 

segmentation of abnormal tissues in medical images is 

explained. MMTDNN is considered as an extension of 

MTANN; in fact, the representation capability of 

MTANN is increased by replacing the fully connected 

layers with multiple convolutional layers. In other 

words, we add convolutional layers to the MTANN 

architecture to enable considering sub-images in their 

original two-dimensional form [23]. These 

convolutional layers allow generating better features 

than fully connected layers of the original MTANN. 

More concretely, convolution layers perform feature 

learning while fully connected layers perform the task 

of high-level reasoning [2]. In contrast to MTANN, 

which models abnormalities in local scale, the 

proposed method considers multiple views at multiple 

scales of the input image. In other words, the proposed 

method labels each pixel of the input image as either 

normal or abnormal by considering its local, regional, 

and global contextual information through local, 

regional, and global views, respectively. Indeed, the 

image patches, which surround a typical pixel in 

different views, are abstracted together using a 

customized CNN. Although the multi-view extension 

of MTANN leads a better description of image patches 

by utilizing convolutional layers inside the network, 

on the other hand, the power of MTANN utilizing 

outside convolution remains. Outside convolution 

allows generating multiple overlapped sub-regions of 

input image and model abnormalities with a small 

number of training images which is beneficiary for 

medical applications. The proposed MMTDNN uses 

the benefits of both CNN and MTANN 

simultaneously as two popular methods for the 

analysis of medical images.  

As the block diagram of the proposed MMTDNN in 

Figure 2 demonstrates, it has four phases, namely 

preprocessing, view generation, pixel-level 

segmentation, and post-processing. The input of the 

proposed method is a raw two-dimensional medical 

image, and its output is a binary mask that corresponds 

to abnormal areas of the input image. The sections 

ahead shall explain the goal and functionality of all 

four main phases of the proposed method. 

 

2.2.1. Preprocessing 

In order to segment the input images efficiently, 

two preprocessing tasks of image resizing and 

intensity normalization are performed in the 

preprocessing phase. In the image resizing task, all the 

images are resized to 300 × 400 pixels by utilizing 

pixel-area-relation interpolation. Also, the intensity of 

each RGB channel of images is rescaled to the range 

[0,1] using min-max normalization. 

2.2.2. View Generation 

As mentioned previously, the proposed pixel-based 

segmentation method judges each pixel of the input 

image by considering that pixel in various views. The 

main reason for considering a pixel in multiple views 

is that the information from multiple scales is 

Figure 2. Block diagram of the proposed MMTDNN; 

input of MMTDNN is a medical image with a lesion 

area, and the output is a lesion binary mask 
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complementary and leads to a more robust 

segmentation of abnormal tissues. In the proposed 

method, three views are supposed to impose 

complementary contextual information about each 

pixel in the segmentation pipeline. These views carry 

information in three levels of local, regional, and 

global. The local view is an n×n image patch centered 

on the pixel under analysis. The regional view is a 2n 

× 2n image path which is again centered on the pixel 

under analysis; this view allows having a broader view 

over the pixel under analysis. The global view is a 4n 

× 4n image path which is more extensive than both 

local and regional views.  

In the process of view generation, the marginal 

pixels, which are far from the center, are challenging. 

In this situation, a typical view that surrounds a 

marginal pixel may fall outside of the image under 

consideration. In order to tackle this problem, a 

suitable padding strategy is employed. In the proposed 

method, the images are extended by replicating 

columns and rows to empty columns and rows in the 

views. Moreover, by knowing the fact that lesions are 

mainly placed in the center of input images, marginal 

pixels are not very informative in the process of 

learning. 

After acquiring all three local, regional, and global 

views of a pixel, all of the image patches, which 

correspond to a view, are downscaled to have the size 

of n×n as the same size of the local view. These image 

patches are concatenated together to form a nine-

channel image. This nine-channel image can be 

considered as a comprehensive tensor which contains 

information about a pixel. In other words, this nine-

channel image or comprehensive tensor allows having 

more complementary information about a pixel. A set 

of tensors, each of which corresponds to a pixel of the 

preprocessed image are extracted in lexicographic 

order. Finally, each tensor, which is considered as an 

extension of a pixel, is passed to the next phase to 

compute the likelihood of that pixel belonging to the 

lesion area or not. 

2.2.3. Pixel-Level Segmentation 

In order to perform accurate pixel-level 

segmentation, all three local, regional, and global 

views, which are concatenated to form a 

comprehensive tensor, must be considered 

simultaneously. For this matter, a CNN capable of 

handling this comprehensive tensor is proposed. The 

input of this network is a comprehensive tensor with 

extended information about a pixel. In addition, the 

network output is an abnormality likelihood of the 

pixel under consideration. The network receives 

contextual information at multiple levels through the 

tensor and jointly exploits features at different scales. 

Therefore, this network is capable of abstracting input 

data; and consequently, producing a posterior 

probability for each tensor which describes a pixel. As 

a result, pixels with a high posterior probability likely 

belongs to the abnormal areas. After considering all 

pixels of the input image, a posterior probability map 

for that image is generated; later, this posterior 

probability map is processed to produce the final 

lesion mask. 

The segmentation network must have a particular 

structure and utilize proper regularization techniques 

to be able to compute the likelihood properly. With 

these conditions, a deep enough network is needed to 

generate more representative features to deal with the 

significant variations of both normal and abnormal 

tissues in medical images. As it is depicted in Figure 

3, the network consists of 13 layers. Moreover, the 

total number of trainable parameters in this network is 

4,544,769, which leads the network optimization to be 

a hard task. In this architecture, nine convolutional 

layers carry the burden of feature learning. These 

features distinguish pixels of healthy tissues from the 

pixels belonging to abnormal tissues. The convolution 

kernel size for non-dimension-expansion layers is 

3×3. Fully connected layers at the end of the network 

carry the task of high-level reasoning and computing 

the final likelihood according to the features learned 

in the previous layers. Since training of such deep 

networks is challenging, some techniques, including 

batch normalization [24], dropout [25], and residual 

learning [26] are utilized to facilitate network training 

and parameter optimization. 

To conclude, the proposed pixel-based 

segmentation network makes use of multiple 

convolutional layers to abstract and extract 

discriminatory features for distinguishing abnormal 

pixels from the normal ones. After the pixel-level 

segmentation phase, a likelihood map of the input  
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image is generated by putting all likelihood together 

in a 2D grid. From this likelihood map, the abnormal 

tissue mask is extracted after some post-processing 

tasks. 

To conclude, the proposed pixel-based 

segmentation network makes use of multiple 

convolutional layers to abstract and extract 

discriminatory features for distinguishing abnormal 

pixels from the normal ones. After the pixel-level 

segmentation phase, a likelihood map of the input 

image is generated by putting all likelihood together 

in a 2D grid. From this likelihood map, the abnormal 

tissue mask is extracted after some post-processing 

tasks. 

2.2.4. Post-Processing 

In the post-processing phase of the proposed 

method, the lesion likelihood map from the previous 

phase is further processed to generate a binary lesion 

mask. For this matter, the output lesion mask is 

thresholded to generate the initial binary lesion mask. 

In order to perform binarization, the Otsu thresholding 

method is employed [27]. The initial lesion mask goes 

under the connected-component-analysis processes to 

select the largest connected component as the best 

candidate for lesion mask. Finally, this largest 

connected component goes under the whole-filling 

process to produce the final lesion mask. 

3. Results and Discussion 

After the successful implementation of the 

proposed segmentation method, its performance has 

been evaluated in the challenging task of skin lesion 

segmentation. In order to quantitatively measure the 

performance of the proposed segmentation method, a 

variety of standard measures are utilized [1]. These 

measures, which perform an evaluation at a pixel  

 

 

 

 

 

 

level, include Accuracy (ACC), Sensitivity (SEN), 

Specificity (SPE), Dice Similarity Coefficient (DSC), 

and Jaccard index (JAC). 

Definition of ACC, SEN, SPE, DSC, and JAC are 

described by Equations 1 to 5, respectively. These 

measures are calculated based on four quantifiers of 

True Positive (TP), True Negative (TN), False 

Positive (FP), and False Negative (FN). TP is the 

number of pixels that the proposed segmentation 

method correctly identified as belonging to a lesion 

area; TN is the number of pixels that the proposed 

segmentation method correctly identified as belonging 

to a normal area; FP is the number of pixels that the 

proposed segmentation method wrongly identified as 

belonging to a lesion area, and FN is the number of 

pixels that the proposed segmentation method 

wrongly identified as belonging to a normal area. 

Moreover, SEN and SPE quantify the performance of 

the proposed segmentation methods on identifying 

pixels belonging to the abnormal regions and the 

pixels belonging to the normal areas, respectively. 

Besides, DSC and JAC attempt to summarize SEN and 

SPE in one unique measure capable of reflecting both 

SEN and SPE. 

ACC =
TP+TN

TP+TN+FP+FN
    (1) 

SEN =
TP

TP+FN
    (2) 

SPE =
TN

TN+FP
    (3) 

DSC =
2×TP

2×TP+FN+FP
    (4) 

JAC =
TP

TP+FN+FP
 (5) 

The quantitative performance of the proposed 

method is measured for all of the images in the test-

set. With this regard, all of the mentioned performance 

measures are calculated for each image individually 

by incorporating a ground-truth mask and the lesion 

mask produced by the proposed segmentation method. 

Figure 3. The block diagram of the proposed pixel-based segmentation network 
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Furthermore, alongside the segmentation network 

architecture, the view sizes, and the threshold value of 

the likelihood map are critical components of the 

proposed method to be validated for the best 

performance. In the paragraphs ahead, we will discuss 

how the parameters of the proposed method are 

selected and tuned; later, the results with the best 

settings are reported, discussed, and compared to the 

state-of-the-art. 

3.1. Training of the Segmentation Network 

The segmentation network, with the structure, 

explained in section 2.2.3, is the heart of MMTDNN. 

As a result, proper training of this network is 

mandatory for better performance. The input of the 

segmentation network is a tensor. As explained in 

section 2.2.2, each tensor provides information for the 

description of a typical pixel. Accordingly, for each 

image in the training set, a set of tensors is extracted 

to be used as training data of the segmentation 

network. Furthermore, 20 percent of the training 

images are selected as the validation set to monitor the 

training process. To set the network weights properly, 

Stochastic Gradient Descends (SGD) is employed as 

an optimizer [28]. Important parameters of this 

optimizer are the learning rate and the momentum 

which has been set to 0.01 and 0.9, respectively. SGD 

optimized the network in a total of 40 epochs; in the 

last 15 epochs, no more significant improvement on 

the accuracy of the validation set has occurred. 

Therefore, the training is ended at epoch 40 in its best 

situation. Continuing training for more epochs leads 

the training accuracy to improve more and the 

validation accuracy to decline. In other words, in the 

last 15 epochs, the accuracy of the validation become 

oscillatory and had started to reverse from its optimal 

condition. In this situation, where the accuracy of the 

training set continues to improve, the training process 

is stopped in its best point to prevent the network from 

overfitting. 

3.2. The Effect of View Size on the 

Segmentation Network 

The size of views is an important parameter that 

affects the performance of the segmentation network; 

and consequently, the performance of the proposed 

MMTDNN. To choose the best view size, the 

performance of the segmentation network under views 

of various sizes is evaluated. Meanwhile, the accuracy 

of the segmentation network for view sizes of 25×25, 

31×31, and 35×35 are measured. As is summarized in 

Table 1, the best view size is 31×31. This size gives 

the highest possible amount of accuracy on the 

validation set. Performance of the best size is almost 

near the performance of the views of size 25×25 and 

far from the views of size 35×35; this means that the 

more extensive views cannot perform as accurately as 

small views. 

Table 1. Effect of view size on the performance 

of the segmentation network 

3.3. Evaluation of the Proposed Method on the 

Test Set  

After finding the best settings of different 

components of the proposed segmentation method, its 

performance has been evaluated on the test set. In this 

round of evaluation, all of the previously mentioned 

measures are calculated for each image in the test set. 

These results, which are averaged over all of the 

testing images, are summarized in Table 2. 

In terms of accuracy, the proposed method performs 

satisfactorily; this means that the segmentation 

network correctly learns the patterns that are necessary 

for distinguishing lesion and non-lesion pixels. The 

high specificity of MMTDNN demonstrates that the 

proposed method can accurately identify nearly all 

normal pixels of the testing images as normal. In 

contrast to specificity, the sensitivity of MMTDNN is 

low; this means that the proposed method fails to 

correctly identify some of the pixels belonging to the 

lesion areas. Overall, the proposed method performs 

well in terms of quantitative measures, including 

ACC, SEN, SPE, DSC, and JAC. This satisfactory 

performance is the result of learning various patterns 

by the segmentation network. In other words, the 

segmentation network is trained with numerous 

profiles of both normality and abnormality thanks to 

the massive training strategy. 

35×35 31×31 25×25 Window Size 

0.952 0.975 0.961 Accuracy 
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Table 2. Performance of the proposed MMTDNN on the 

test-set 

Performance 

Measure 
ACC SEN SPE DSC JAC 

Value 0.973 0.912 0.986 0.931 0.876 

Figure 4 demonstrates a set of challenging 

examples, in which the proposed automatic 

segmentation method of skin lesions performs well. In 

this set, Figures 4(a), 4(b), and 4(c) show examples 

with massive hair artifacts; Figures 4(g) and 4(h) 

depict examples with color charts; Figures 4(c) and 

4(d) demonstrate examples of low contrast between 

the lesion and normal areas; Figures 4(i) and 4(j) 

represent examples of inhomogeneous appearance; 

Figure 4(k) and 4(l) display examples with fuzzy 

borders. Overall, the proposed method is almost robust 

to all of these challenging circumstances; 

consequently, it can accurately delineate nearly all 

lesion areas in these situations. 

Although the proposed method can achieve 

satisfactory performance in delineating lesion areas in 

examples with the previously mentioned challenging 

conditions, there are still some limitations. The 

proposed method, sometimes over-segment or under-

segment the lesion areas. As Figure 5 depicts, usually, 

the cases with low contrast, unsharp borders, and 

irregular shapes suffer from the adverse phenomena of 

under/over-segmentation. 

The main reason for this shortcoming is that the 

proposed segmentation network cannot learn the 

discriminative patterns in these examples as well as 

other examples. Increasing the network capacity and 

proper post-processing techniques may alleviate these 

problems. 

The main reason for this shortcoming is that the 

proposed segmentation network cannot learn the 

discriminative patterns in these examples as well as 

other examples. Increasing the network capacity and 

proper post-processing techniques may alleviate these 

problems. 

3.4. Comparing the Results of MMTDNN with 

the Results of Other Methods 

In this section, we shall compare the performance 

of the proposed method with some of the existing 

representative methods of skin lesion segmentation. 

For the sake of fair comparison, only those studies that 

use ISBI-2016 dataset in their evaluation procedure 

are considered. The results of this comparison in terms 

of quantitative measures are summarized in Table 3. 

As it is shown in this table, the proposed MMTDNN 

outperforms all of these methods of skin lesion 

segmentation.   

In terms of ACC, DSC, JAC, and SPE, our method 

performs superior to other methods in this table. In 

other words, MMTDNN reduces the error rate (1-

ACC) of the segmentation by 27 percent. As the 

segmentation of abnormal tissues is a class-imbalance 

problem, JAC can better describe the performance of 

MMTDNN. Therefore, we insist that MMTDNN 

improves the gap (1-JAC) to the best JAC value by 38 

percent. Besides this excellent performance, the 

proposed method performs poorly in terms of SEN 

Figure 4. Examples that MMTDNN correctly 

segments the lesion areas. The red and green 

contours indicate the segmentation results of the 

ground truth and MMTDNN, respectively 

Figure 5. Examples that the proposed method over-

segments or under-segments lesion areas. The red and 

green contours indicate the segmentation results of the 

ground truth and MMTDNN, respectively 
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measure. In other words, MMTDNN is less sensitive 

than the two methods highlighted in Table 3. Lower 

sensitivity indicates that the proposed method 

performs worse than the two mentioned methods, to 

identify the pixels belonging to the lesion areas 

correctly. Overall, MMTDNN performs very 

satisfactorily in comparison to the methods that have 

been evaluated on the ISBI-2016 dataset. 

This study aimed to increase the representation 

capability of MTANN by providing more powerful 

architecture based on CNNs. In order to demonstrate 

the superiority of MMTDNN over MTANN, we 

perform an experiment and provide the results in  

Table 3. As was expected, MTANN performs very 

poorly. 

4. Conclusion 

In this study, we have proposed and developed a 

pattern recognition technique mainly based on 

artificial neural networks, termed multi-view massive 

training deep neural network. The proposed method is, 

in fact, an extension of both MTANN and CNN in a 

way to better handling multi-view or tensor input. In 

other words, the proposed method attempts to gain the 

benefits of both CNN and MTANN. CNN increases 

representation capability than MTANN by 

automatically learning sophisticated and relevant 

features directly from the data.  

In another perspective, the proposed method is 

suitable for cases that the training data are rare; in such 

situations, too many training samples are generated 

thanks to the massive training strategy. Also, a 

massive training strategy prevents the network from 

overfitting and leading the network to be more 

generalized. The key to this high generalizability 

might be due to the division of one image into a large 

number of overlapped sub-regions. 

In this study, the performance of the proposed 

method has been evaluated on the task of automated 

skin lesion segmentation. As experimental results 

demonstrate, the proposed method outperforms state-

of-the-art methods of skin lesion segmentation. 

Moreover, MMTDNN is robust to hair artifacts, shape 

irregularities, appearance inhomogeneity, and fuzzy 

boundaries. The main reason for the prosperity of 

MMTDNN is its high capability of learning 

discriminative features in the multi-view 

neighborhood of image pixels. Moreover, the 

proposed method is very promising to be applied to 

other tasks of abnormality detection and segmentation 

in medical images.  

The performance of the proposed method can be 

improved by incorporating more views in the view 

generation process and also increasing the capacity of 

the model by creating a deeper segmentation network 

and adding more feature maps to the convolutional 

layers. Also, the proposed MMTDNN can be 

implemented in parallel to be run faster. 

In our future works, we will increase the capacity of 

the segmentation network to reduce network error. 

Moreover, generating more informative and 

compliment views is another effort for improving 

performance of the proposed method.  
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